Quadratic integer

Last updated

In number theory, quadratic integers are a generalization of the usual integers to quadratic fields. Quadratic integers are algebraic integers of degree two, that is, solutions of equations of the form

Contents

x2 + bx + c = 0

with b and c (usual) integers. When algebraic integers are considered, the usual integers are often called rational integers.

Common examples of quadratic integers are the square roots of rational integers, such as 2, and the complex number i = −1, which generates the Gaussian integers. Another common example is the non-real cubic root of unity −1 + −3/2, which generates the Eisenstein integers.

Quadratic integers occur in the solutions of many Diophantine equations, such as Pell's equations, and other questions related to integral quadratic forms. The study of rings of quadratic integers is basic for many questions of algebraic number theory.

History

Medieval Indian mathematicians had already discovered a multiplication of quadratic integers of the same D, which allowed them to solve some cases of Pell's equation.[ citation needed ]

The characterization given in § Explicit representation of the quadratic integers was first given by Richard Dedekind in 1871. [1] [2]

Definition

A quadratic integer is an algebraic integer of degree two. More explicitly, it is a complex number , which solves an equation of the form x2 + bx + c = 0, with b and c integers. Each quadratic integer that is not an integer is not rational – namely, it's a real irrational number if b2 − 4c > 0 and non-real if b2 − 4c < 0 – and lies in a uniquely determined quadratic field , the extension of generated by the square root of the unique square-free integer D that satisfies b2 − 4c = De2 for some integer e. If D is positive, the quadratic integer is real. If D < 0, it is imaginary (that is, complex and non-real).

The quadratic integers (including the ordinary integers) that belong to a quadratic field form an integral domain called the ring of integers of

Although the quadratic integers belonging to a given quadratic field form a ring, the set of all quadratic integers is not a ring because it is not closed under addition or multiplication. For example, and are quadratic integers, but and are not, as their minimal polynomials have degree four.

Explicit representation

Here and in the following, the quadratic integers that are considered belong to a quadratic field where D is a square-free integer. This does not restrict the generality, as the equality a2D = aD (for any positive integer a) implies

An element x of is a quadratic integer if and only if there are two integers a and b such that either

or, if D 1 is a multiple of 4

with a and b both odd

In other words, every quadratic integer may be written a + ωb, where a and b are integers, and where ω is defined by

(as D has been supposed square-free the case is impossible, since it would imply that D is divisible by the square 4). [3]

Norm and conjugation

A quadratic integer in may be written

a + bD,

where a and b are either both integers, or, only if D ≡ 1 (mod 4), both halves of odd integers. The norm of such a quadratic integer is

N(a + bD) = a2Db2.

The norm of a quadratic integer is always an integer. If D < 0, the norm of a quadratic integer is the square of its absolute value as a complex number (this is false if D > 0). The norm is a completely multiplicative function, which means that the norm of a product of quadratic integers is always the product of their norms.

Every quadratic integer a + bD has a conjugate

A quadratic integer has the same norm as its conjugate, and this norm is the product of the quadratic integer and its conjugate. The conjugate of a sum or a product of quadratic integers is the sum or the product (respectively) of the conjugates. This means that the conjugation is an automorphism of the ring of the integers of – see § Quadratic integer rings , below.

Quadratic integer rings

Every square-free integer (different from 0 and 1) D defines a quadratic integer ring, which is the integral domain consisting of the algebraic integers contained in It is the set Z[ω] = {a + ωb : a, bZ}, where if D = 4k + 1, and ω = D otherwise. It is often denoted , because it is the ring of integers of , which is the integral closure of Z in The ring Z[ω] consists of all roots of all equations x2 + Bx + C = 0 whose discriminant B2 − 4C is the product of D by the square of an integer. In particular D belongs to Z[ω], being a root of the equation x2D = 0, which has 4D as its discriminant.

The square root of any integer is a quadratic integer, as every integer can be written n = m2D, where D is a square-free integer, and its square root is a root of x2m2D = 0.

The fundamental theorem of arithmetic is not true in many rings of quadratic integers. However, there is a unique factorization for ideals, which is expressed by the fact that every ring of algebraic integers is a Dedekind domain. Being the simplest examples of algebraic integers, quadratic integers are commonly the starting examples of most studies of algebraic number theory. [4]

The quadratic integer rings divide in two classes depending on the sign of D. If D > 0, all elements of are real, and the ring is a real quadratic integer ring. If D < 0, the only real elements of are the ordinary integers, and the ring is a complex quadratic integer ring.

For real quadratic integer rings, the class number – which measures the failure of unique factorization – is given in OEIS A003649; for the imaginary case, they are given in OEIS A000924.

Units

A quadratic integer is a unit in the ring of the integers of if and only if its norm is 1 or −1. In the first case its multiplicative inverse is its conjugate. It is the negation of its conjugate in the second case.

If D < 0, the ring of the integers of has at most six units. In the case of the Gaussian integers (D = −1), the four units are 1, −1, −1, −−1. In the case of the Eisenstein integers (D = −3), the six units are ±1, ±1 ± −3/2. For all other negative D, there are only two units, which are 1 and −1.

If D > 0, the ring of the integers of has infinitely many units that are equal to ±ui, where i is an arbitrary integer, and u is a particular unit called a fundamental unit . Given a fundamental unit u, there are three other fundamental units, its conjugate and also and Commonly, one calls "the fundamental unit" the unique one which has an absolute value greater than 1 (as a real number). It is the unique fundamental unit that may be written as a + bD, with a and b positive (integers or halves of integers).

The fundamental units for the 10 smallest positive square-free D are 1 + 2, 2 + 3, 1 + 5/2 (the golden ratio), 5 + 26, 8 + 37, 3 + 10, 10 + 311, 3 + 13/2, 15 + 414, 4 + 15. For larger D, the coefficients of the fundamental unit may be very large. For example, for D = 19, 31, 43, the fundamental units are respectively 170 + 3919, 1520 + 27331 and 3482 + 53143.

Examples of complex quadratic integer rings

Gaussian integers Punktraster.svg
Gaussian integers
Eisenstein primes EisensteinPrimes-01.svg
Eisenstein primes

For D < 0, ω is a complex (imaginary or otherwise non-real) number. Therefore, it is natural to treat a quadratic integer ring as a set of algebraic complex numbers.

Both rings mentioned above are rings of integers of cyclotomic fields Q(ζ4) and Q(ζ3) correspondingly. In contrast, Z[−3] is not even a Dedekind domain.

Both above examples are principal ideal rings and also Euclidean domains for the norm. This is not the case for

which is not even a unique factorization domain. This can be shown as follows.

In we have

The factors 3, and are irreducible, as they have all a norm of 9, and if they were not irreducible, they would have a factor of norm 3, which is impossible, the norm of an element different of ±1 being at least 4. Thus the factorization of 9 into irreducible factors is not unique.

The ideals and are not principal, as a simple computation shows that their product is the ideal generated by 3, and, if they were principal, this would imply that 3 would not be irreducible.

Examples of real quadratic integer rings

Powers of the golden ratio Golden spiral in rectangles.svg
Powers of the golden ratio

For D > 0, ω is a positive irrational real number, and the corresponding quadratic integer ring is a set of algebraic real numbers. The solutions of the Pell's equation X2DY2 = 1, a Diophantine equation that has been widely studied, are the units of these rings, for D ≡ 2, 3 (mod 4).

Principal rings of quadratic integers

The unique factorization property is not always verified for rings of quadratic integers, as seen above for the case of Z[−5]. However, as for every Dedekind domain, a ring of quadratic integers is a unique factorization domain if and only if it is a principal ideal domain. This occurs if and only if the class number of the corresponding quadratic field is one.

The imaginary rings of quadratic integers that are principal ideal rings have been completely determined. These are for

D = −1, −2, −3, −7, −11, −19, −43, −67, −163.

This result was first conjectured by Gauss and proven by Kurt Heegner, although Heegner's proof was not believed until Harold Stark gave a later proof in 1967 (see Stark–Heegner theorem ). This is a special case of the famous class number problem.

There are many known positive integers D > 0, for which the ring of quadratic integers is a principal ideal ring. However, the complete list is not known; it is not even known if the number of these principal ideal rings is finite or not.

Euclidean rings of quadratic integers

When a ring of quadratic integers is a principal ideal domain, it is interesting to know whether it is a Euclidean domain. This problem has been completely solved as follows.

Equipped with the norm as a Euclidean function, is a Euclidean domain for negative D when

D = −1, −2, −3, −7, −11, [7]

and, for positive D, when

D = 2, 3, 5, 6, 7, 11, 13, 17, 19, 21, 29, 33, 37, 41, 57, 73(sequence A048981 in the OEIS ).

There is no other ring of quadratic integers that is Euclidean with the norm as a Euclidean function. [8] For negative D, a ring of quadratic integers is Euclidean if and only if the norm is a Euclidean function for it. It follows that, for

D = −19, −43, −67, −163,

the four corresponding rings of quadratic integers are among the rare known examples of principal ideal domains that are not Euclidean domains.

On the other hand, the generalized Riemann hypothesis implies that a ring of real quadratic integers that is a principal ideal domain is also a Euclidean domain for some Euclidean function, which can indeed differ from the usual norm. [9] The values D = 14, 69 were the first for which the ring of quadratic integers was proven to be Euclidean, but not norm-Euclidean. [10] [11]

Notes

  1. Dedekind 1871, Supplement X, p. 447
  2. Bourbaki 1994, p. 99
  3. "Why is quadratic integer ring defined in that way?". math.stackexchange.com. Retrieved 2016-12-31.
  4. Artin, Ch 13
  5. Dummit & Foote 2004, p. 229
  6. de Bruijn 1981
  7. Dummit & Foote 2004, p. 272
  8. LeVeque 2002, pp. II:57, 81
  9. P. Weinberger, On Euclidean rings of algebraic integers. In: Analytic Number Theory (St. Louis, 1972), Proc. Sympos. Pure Math. 24(1973), 321–332.
  10. Harper 2004
  11. Clark 1994

Related Research Articles

<span class="mw-page-title-main">Complex number</span> Number with a real and an imaginary part

In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted i, called the imaginary unit and satisfying the equation ; every complex number can be expressed in the form , where a and b are real numbers. Because no real number satisfies the above equation, i was called an imaginary number by René Descartes. For the complex number ,a is called the real part, and b is called the imaginary part. The set of complex numbers is denoted by either of the symbols or C. Despite the historical nomenclature, "imaginary" complex numbers have a mathematical existence as firm as that of the real numbers, and they are fundamental tools in the scientific description of the natural world.

In mathematics, more specifically in ring theory, a Euclidean domain is an integral domain that can be endowed with a Euclidean function which allows a suitable generalization of the Euclidean division of integers. This generalized Euclidean algorithm can be put to many of the same uses as Euclid's original algorithm in the ring of integers: in any Euclidean domain, one can apply the Euclidean algorithm to compute the greatest common divisor of any two elements. In particular, the greatest common divisor of any two elements exists and can be written as a linear combination of them. Also every ideal in a Euclidean domain is principal, which implies a suitable generalization of the fundamental theorem of arithmetic: every Euclidean domain is a unique factorization domain.

In mathematics, a principal ideal domain, or PID, is an integral domain in which every ideal is principal, i.e., can be generated by a single element. More generally, a principal ideal ring is a nonzero commutative ring whose ideals are principal, although some authors refer to PIDs as principal rings. The distinction is that a principal ideal ring may have zero divisors whereas a principal ideal domain cannot.

<span class="mw-page-title-main">Gaussian integer</span> Complex number whose real and imaginary parts are both integers

In number theory, a Gaussian integer is a complex number whose real and imaginary parts are both integers. The Gaussian integers, with ordinary addition and multiplication of complex numbers, form an integral domain, usually written as or

In mathematics, a unique factorization domain (UFD) is a ring in which a statement analogous to the fundamental theorem of arithmetic holds. Specifically, a UFD is an integral domain in which every non-zero non-unit element can be written as a product of irreducible elements, uniquely up to order and units.

In abstract algebra, a Dedekind domain or Dedekind ring, named after Richard Dedekind, is an integral domain in which every nonzero proper ideal factors into a product of prime ideals. It can be shown that such a factorization is then necessarily unique up to the order of the factors. There are at least three other characterizations of Dedekind domains that are sometimes taken as the definition: see below.

In number theory, the ideal class group of an algebraic number field K is the quotient group JK /PK where JK is the group of fractional ideals of the ring of integers of K, and PK is its subgroup of principal ideals. The class group is a measure of the extent to which unique factorization fails in the ring of integers of K. The order of the group, which is finite, is called the class number of K.

<span class="mw-page-title-main">Algebraic number theory</span> Branch of number theory

Algebraic number theory is a branch of number theory that uses the techniques of abstract algebra to study the integers, rational numbers, and their generalizations. Number-theoretic questions are expressed in terms of properties of algebraic objects such as algebraic number fields and their rings of integers, finite fields, and function fields. These properties, such as whether a ring admits unique factorization, the behavior of ideals, and the Galois groups of fields, can resolve questions of primary importance in number theory, like the existence of solutions to Diophantine equations.

In mathematics, the (field) norm is a particular mapping defined in field theory, which maps elements of a larger field into a subfield.

In algebraic number theory, a quadratic field is an algebraic number field of degree two over , the rational numbers.

In mathematics, Dirichlet's unit theorem is a basic result in algebraic number theory due to Peter Gustav Lejeune Dirichlet. It determines the rank of the group of units in the ring OK of algebraic integers of a number field K. The regulator is a positive real number that determines how "dense" the units are.

In mathematics, the ring of integers of an algebraic number field is the ring of all algebraic integers contained in . An algebraic integer is a root of a monic polynomial with integer coefficients: . This ring is often denoted by or . Since any integer belongs to and is an integral element of , the ring is always a subring of .

In commutative algebra, the norm of an ideal is a generalization of a norm of an element in the field extension. It is particularly important in number theory since it measures the size of an ideal of a complicated number ring in terms of an ideal in a less complicated ring. When the less complicated number ring is taken to be the ring of integers, Z, then the norm of a nonzero ideal I of a number ring R is simply the size of the finite quotient ring R/I.

In mathematics, in particular commutative algebra, the concept of fractional ideal is introduced in the context of integral domains and is particularly fruitful in the study of Dedekind domains. In some sense, fractional ideals of an integral domain are like ideals where denominators are allowed. In contexts where fractional ideals and ordinary ring ideals are both under discussion, the latter are sometimes termed integral ideals for clarity.

In mathematics, complex multiplication (CM) is the theory of elliptic curves E that have an endomorphism ring larger than the integers. Put another way, it contains the theory of elliptic functions with extra symmetries, such as are visible when the period lattice is the Gaussian integer lattice or Eisenstein integer lattice.

In additive number theory, Fermat's theorem on sums of two squares states that an odd prime p can be expressed as:

<span class="mw-page-title-main">Eisenstein integer</span> Complex number whose mapping on a coordinate plane produces a triangular lattice

In mathematics, the Eisenstein integers, occasionally also known as Eulerian integers, are the complex numbers of the form

In commutative algebra, an element b of a commutative ring B is said to be integral over a subring A of B if b is a root of some monic polynomial over A.

In mathematics, an algebraic number field is an extension field of the field of rational numbers such that the field extension has finite degree . Thus is a field that contains and has finite dimension when considered as a vector space over .

In mathematics, in number theory, Gauss composition law is a rule, invented by Carl Friedrich Gauss, for performing a binary operation on integral binary quadratic forms (IBQFs). Gauss presented this rule in his Disquisitiones Arithmeticae, a textbook on number theory published in 1801, in Articles 234 - 244. Gauss composition law is one of the deepest results in the theory of IBQFs and Gauss's formulation of the law and the proofs its properties as given by Gauss are generally considered highly complicated and very difficult. Several later mathematicians have simplified the formulation of the composition law and have presented it in a format suitable for numerical computations. The concept has also found generalisations in several directions.

References

Further reading