Fundamental unit (number theory)

Last updated

In algebraic number theory, a fundamental unit is a generator (modulo the roots of unity) for the unit group of the ring of integers of a number field, when that group has rank 1 (i.e. when the unit group modulo its torsion subgroup is infinite cyclic). Dirichlet's unit theorem shows that the unit group has rank 1 exactly when the number field is a real quadratic field, a complex cubic field, or a totally imaginary quartic field. When the unit group has rank ≥ 1, a basis of it modulo its torsion is called a fundamental system of units. [1] Some authors use the term fundamental unit to mean any element of a fundamental system of units, not restricting to the case of rank 1 (e.g. Neukirch 1999 , p. 42).

Contents

Real quadratic fields

For the real quadratic field (with d square-free), the fundamental unit ε is commonly normalized so that ε > 1 (as a real number). Then it is uniquely characterized as the minimal unit among those that are greater than 1. If Δ denotes the discriminant of K, then the fundamental unit is

where (a, b) is the smallest solution to [2]

in positive integers. This equation is basically Pell's equation or the negative Pell equation and its solutions can be obtained similarly using the continued fraction expansion of .

Whether or not x2  Δy2 = −4 has a solution determines whether or not the class group of K is the same as its narrow class group, or equivalently, whether or not there is a unit of norm −1 in K. This equation is known to have a solution if, and only if, the period of the continued fraction expansion of is odd. A simpler relation can be obtained using congruences: if Δ is divisible by a prime that is congruent to 3 modulo 4, then K does not have a unit of norm −1. However, the converse does not hold as shown by the example d = 34. [3] In the early 1990s, Peter Stevenhagen proposed a probabilistic model that led him to a conjecture on how often the converse fails. Specifically, if D(X) is the number of real quadratic fields whose discriminant Δ < X is not divisible by a prime congruent to 3 modulo 4 and D(X) is those who have a unit of norm −1, then [4]

In other words, the converse fails about 42% of the time. As of March 2012, a recent result towards this conjecture was provided by Étienne Fouvry and Jürgen Klüners [5] who show that the converse fails between 33% and 59% of the time. In 2022, Peter Koymans and Carlo Pagano [6] claimed a complete proof of Stevenhagen's conjecture.

Cubic fields

If K is a complex cubic field then it has a unique real embedding and the fundamental unit ε can be picked uniquely such that |ε| > 1 in this embedding. If the discriminant Δ of K satisfies |Δ|  33, then [7]

For example, the fundamental unit of is and whereas the discriminant of this field is −108 thus

so .

Notes

  1. Alaca & Williams 2004 , §13.4
  2. Neukirch 1999 , Exercise I.7.1
  3. Alaca & Williams 2004 , Table 11.5.4
  4. Stevenhagen 1993 , Conjecture 1.4
  5. Fouvry & Klüners 2010
  6. Koymans, Peter; Pagano, Carlo (2022-01-31). "On Stevenhagen's conjecture". arXiv: 2201.13424 [math.NT].
  7. Alaca & Williams 2004 , Theorem 13.6.1

Related Research Articles

In mathematics, a quadratic equation is an equation that can be rearranged in standard form as where the variable x represents an unknown number, and a, b, and c represent known numbers, where a ≠ 0. The numbers a, b, and c are the coefficients of the equation and may be distinguished by respectively calling them, the quadratic coefficient, the linear coefficient and the constant coefficient or free term.

In mathematics, the discriminant of a polynomial is a quantity that depends on the coefficients and allows deducing some properties of the roots without computing them. More precisely, it is a polynomial function of the coefficients of the original polynomial. The discriminant is widely used in polynomial factoring, number theory, and algebraic geometry.

<span class="mw-page-title-main">Quadratic formula</span> Formula that provides the solutions to a quadratic equation

In elementary algebra, the quadratic formula is a closed-form expression describing the solutions of a quadratic equation. Other ways of solving quadratic equations, such as completing the square, yield the same solutions.

In mathematics, the ideal class group of an algebraic number field K is the quotient group JK /PK where JK is the group of fractional ideals of the ring of integers of K, and PK is its subgroup of principal ideals. The class group is a measure of the extent to which unique factorization fails in the ring of integers of K. The order of the group, which is finite, is called the class number of K.

<span class="mw-page-title-main">Cubic equation</span> Polynomial equation of degree 3

In algebra, a cubic equation in one variable is an equation of the form in which a is not zero.

In mathematics, a quadratic irrational number is an irrational number that is the solution to some quadratic equation with rational coefficients which is irreducible over the rational numbers. Since fractions in the coefficients of a quadratic equation can be cleared by multiplying both sides by their least common denominator, a quadratic irrational is an irrational root of some quadratic equation with integer coefficients. The quadratic irrational numbers, a subset of the complex numbers, are algebraic numbers of degree 2, and can therefore be expressed as

<span class="mw-page-title-main">Quartic function</span> Polynomial function of degree four

In algebra, a quartic function is a function of the form

In mathematics, an algebraic equation or polynomial equation is an equation of the form , where P is a polynomial with coefficients in some field, often the field of the rational numbers. For example, is an algebraic equation with integer coefficients and

In algebraic number theory, a quadratic field is an algebraic number field of degree two over , the rational numbers.

In mathematics, Dirichlet's unit theorem is a basic result in algebraic number theory due to Peter Gustav Lejeune Dirichlet. It determines the rank of the group of units in the ring OK of algebraic integers of a number field K. The regulator is a positive real number that determines how "dense" the units are.

In mathematics, the ring of integers of an algebraic number field is the ring of all algebraic integers contained in . An algebraic integer is a root of a monic polynomial with integer coefficients: . This ring is often denoted by or . Since any integer belongs to and is an integral element of , the ring is always a subring of .

In mathematics, the Gauss class number problem, as usually understood, is to provide for each n ≥ 1 a complete list of imaginary quadratic fields having class number n. It is named after Carl Friedrich Gauss. It can also be stated in terms of discriminants. There are related questions for real quadratic fields and for the behavior as .

In mathematics, a binary quadratic form is a quadratic homogeneous polynomial in two variables

In mathematics, more specifically in the field of analytic number theory, a Landau–Siegel zero or simply Siegel zero, also known as exceptional zero), named after Edmund Landau and Carl Ludwig Siegel, is a type of potential counterexample to the generalized Riemann hypothesis, on the zeros of Dirichlet L-functions associated to quadratic number fields. Roughly speaking, these are possible zeros very near to .

In general relativity, the Gibbons–Hawking–York boundary term is a term that needs to be added to the Einstein–Hilbert action when the underlying spacetime manifold has a boundary.

<span class="mw-page-title-main">Discriminant of an algebraic number field</span> Measures the size of the ring of integers of the algebraic number field

In mathematics, the discriminant of an algebraic number field is a numerical invariant that, loosely speaking, measures the size of the algebraic number field. More specifically, it is proportional to the squared volume of the fundamental domain of the ring of integers, and it regulates which primes are ramified.

In algebra, casus irreducibilis is one of the cases that may arise in solving polynomials of degree 3 or higher with integer coefficients algebraically, i.e., by obtaining roots that are expressed with radicals. It shows that many algebraic numbers are real-valued but cannot be expressed in radicals without introducing complex numbers. The most notable occurrence of casus irreducibilis is in the case of cubic polynomials that have three real roots, which was proven by Pierre Wantzel in 1843. One can see whether a given cubic polynomial is in the so-called casus irreducibilis by looking at the discriminant, via Cardano's formula.

In mathematics, specifically the area of algebraic number theory, a cubic field is an algebraic number field of degree three.

The Fréedericksz transition is a phase transition in liquid crystals produced when a sufficiently strong electric or magnetic field is applied to a liquid crystal in an undistorted state. Below a certain field threshold the director remains undistorted. As the field value is gradually increased from this threshold, the director begins to twist until it is aligned with the field. In this fashion the Fréedericksz transition can occur in three different configurations known as the twist, bend, and splay geometries. The phase transition was first observed by Fréedericksz and Repiewa in 1927. In this first experiment of theirs, one of the walls of the cell was concave so as to produce a variation in thickness along the cell. The phase transition is named in honor of the Russian physicist Vsevolod Frederiks.

In the mathematical field of differential geometry, a biharmonic map is a map between Riemannian or pseudo-Riemannian manifolds which satisfies a certain fourth-order partial differential equation. A biharmonic submanifold refers to an embedding or immersion into a Riemannian or pseudo-Riemannian manifold which is a biharmonic map when the domain is equipped with its induced metric. The problem of understanding biharmonic maps was posed by James Eells and Luc Lemaire in 1983. The study of harmonic maps, of which the study of biharmonic maps is an outgrowth, had been an active field of study for the previous twenty years. A simple case of biharmonic maps is given by biharmonic functions.

References