Narrow class group

Last updated

In algebraic number theory, the narrow class group of a number field K is a refinement of the class group of K that takes into account some information about embeddings of K into the field of real numbers.

Contents

Formal definition

Suppose that K is a finite extension of Q. Recall that the ordinary class group of K is defined as the quotient

where IK is the group of fractional ideals of K, and PK is the subgroup of principal fractional ideals of K, that is, ideals of the form aOK where a is an element of K.

The narrow class group is defined to be the quotient

where now PK+ is the group of totally positive principal fractional ideals of K; that is, ideals of the form aOK where a is an element of K such that σ(a) is positive for every embedding

Uses

The narrow class group features prominently in the theory of representing integers by quadratic forms. An example is the following result (Fröhlich and Taylor, Chapter V, Theorem 1.25).

Theorem. Suppose that where d is a square-free integer, and that the narrow class group of K is trivial. Suppose that
is a basis for the ring of integers of K. Define a quadratic form
,
where NK/Q is the norm. Then a prime number p is of the form
for some integers x and yif and only if either
or
or
where dK is the discriminant of K, and
denotes the Legendre symbol.

Examples

For example, one can prove that the quadratic fields Q(−1), Q(2), Q(−3) all have trivial narrow class group. Then, by choosing appropriate bases for the integers of each of these fields, the above theorem implies the following:

(This is known as Fermat's theorem on sums of two squares.)
(cf. Eisenstein prime)

An example that illustrates the difference between the narrow class group and the usual class group is the case of Q(6). This has trivial class group, but its narrow class group has order 2. Because the class group is trivial, the following statement is true:

However, this statement is false if we focus only on p and not −p (and is in fact even false for p = 2), because the narrow class group is nontrivial. The statement that classifies the positive p is the following:

(Whereas the first statement allows primes , the second only allows primes .)

See also

Related Research Articles

<span class="mw-page-title-main">Chinese remainder theorem</span> Theorem for solving simultaneous congruences

In mathematics, the Chinese remainder theorem states that if one knows the remainders of the Euclidean division of an integer n by several integers, then one can determine uniquely the remainder of the division of n by the product of these integers, under the condition that the divisors are pairwise coprime.

In number theory, the Legendre symbol is a multiplicative function with values 1, −1, 0 that is a quadratic character modulo of an odd prime number p: its value at a (nonzero) quadratic residue mod p is 1 and at a non-quadratic residue (non-residue) is −1. Its value at zero is 0.

<span class="mw-page-title-main">Quadratic reciprocity</span> Gives conditions for the solvability of quadratic equations modulo prime numbers

In number theory, the law of quadratic reciprocity is a theorem about modular arithmetic that gives conditions for the solvability of quadratic equations modulo prime numbers. Due to its subtlety, it has many formulations, but the most standard statement is:

Fermat's little theorem states that if p is a prime number, then for any integer a, the number is an integer multiple of p. In the notation of modular arithmetic, this is expressed as

<span class="mw-page-title-main">Factorization</span> (Mathematical) decomposition into a product

In mathematics, factorization (or factorisation, see English spelling differences) or factoring consists of writing a number or another mathematical object as a product of several factors, usually smaller or simpler objects of the same kind. For example, 3 × 5 is an integer factorization of 15, and (x – 2)(x + 2) is a polynomial factorization of x2 – 4.

In number theory, Euler's criterion is a formula for determining whether an integer is a quadratic residue modulo a prime. Precisely,

In mathematics, a reciprocity law is a generalization of the law of quadratic reciprocity to arbitrary monic irreducible polynomials with integer coefficients. Recall that first reciprocity law, quadratic reciprocity, determines when an irreducible polynomial splits into linear terms when reduced mod . That is, it determines for which prime numbers the relation

In mathematics, the Lucas–Lehmer test (LLT) is a primality test for Mersenne numbers. The test was originally developed by Édouard Lucas in 1878 and subsequently proved by Derrick Henry Lehmer in 1930.

In number theory, the Kronecker symbol, written as or , is a generalization of the Jacobi symbol to all integers . It was introduced by Leopold Kronecker.

In mathematics, the interplay between the Galois group G of a Galois extension L of a number field K, and the way the prime ideals P of the ring of integers OK factorise as products of prime ideals of OL, provides one of the richest parts of algebraic number theory. The splitting of prime ideals in Galois extensions is sometimes attributed to David Hilbert by calling it Hilbert theory. There is a geometric analogue, for ramified coverings of Riemann surfaces, which is simpler in that only one kind of subgroup of G need be considered, rather than two. This was certainly familiar before Hilbert.

In additive number theory, Fermat's theorem on sums of two squares states that an odd prime p can be expressed as:

Gauss's lemma in number theory gives a condition for an integer to be a quadratic residue. Although it is not useful computationally, it has theoretical significance, being involved in some proofs of quadratic reciprocity.

In number theory, the law of quadratic reciprocity, like the Pythagorean theorem, has lent itself to an unusually large number of proofs. Several hundred proofs of the law of quadratic reciprocity have been published.

Cubic reciprocity is a collection of theorems in elementary and algebraic number theory that state conditions under which the congruence x3 ≡ p (mod q) is solvable; the word "reciprocity" comes from the form of the main theorem, which states that if p and q are primary numbers in the ring of Eisenstein integers, both coprime to 3, the congruence x3p is solvable if and only if x3q is solvable.

Quartic or biquadratic reciprocity is a collection of theorems in elementary and algebraic number theory that state conditions under which the congruence x4p is solvable; the word "reciprocity" comes from the form of some of these theorems, in that they relate the solvability of the congruence x4p to that of x4q.

In number theory, quadratic integers are a generalization of the usual integers to quadratic fields. Quadratic integers are algebraic integers of degree two, that is, solutions of equations of the form

In mathematics, elliptic curve primality testing techniques, or elliptic curve primality proving (ECPP), are among the quickest and most widely used methods in primality proving. It is an idea put forward by Shafi Goldwasser and Joe Kilian in 1986 and turned into an algorithm by A. O. L. Atkin the same year. The algorithm was altered and improved by several collaborators subsequently, and notably by Atkin and François Morain, in 1993. The concept of using elliptic curves in factorization had been developed by H. W. Lenstra in 1985, and the implications for its use in primality testing followed quickly.

Pocklington's algorithm is a technique for solving a congruence of the form

Coppersmith's attack describes a class of cryptographic attacks on the public-key cryptosystem RSA based on the Coppersmith method. Particular applications of the Coppersmith method for attacking RSA include cases when the public exponent e is small or when partial knowledge of a prime factor of the secret key is available.

In algebraic number theory Eisenstein's reciprocity law is a reciprocity law that extends the law of quadratic reciprocity and the cubic reciprocity law to residues of higher powers. It is one of the earliest and simplest of the higher reciprocity laws, and is a consequence of several later and stronger reciprocity laws such as the Artin reciprocity law. It was introduced by Eisenstein (1850), though Jacobi had previously announced a similar result for the special cases of 5th, 8th and 12th powers in 1839.

References