Generalized Riemann hypothesis

Last updated

The Riemann hypothesis is one of the most important conjectures in mathematics. It is a statement about the zeros of the Riemann zeta function. Various geometrical and arithmetical objects can be described by so-called global L-functions, which are formally similar to the Riemann zeta-function. One can then ask the same question about the zeros of these L-functions, yielding various generalizations of the Riemann hypothesis. Many mathematicians believe these generalizations of the Riemann hypothesis to be true. The only cases of these conjectures which have been proven occur in the algebraic function field case (not the number field case).

Contents

Global L-functions can be associated to elliptic curves, number fields (in which case they are called Dedekind zeta-functions), Maass forms, and Dirichlet characters (in which case they are called Dirichlet L-functions). When the Riemann hypothesis is formulated for Dedekind zeta-functions, it is known as the extended Riemann hypothesis (ERH) and when it is formulated for Dirichlet L-functions, it is known as the generalized Riemann hypothesis or generalised Riemann hypothesis (see spelling differences) (GRH). These two statements will be discussed in more detail below. (Many mathematicians use the label generalized Riemann hypothesis to cover the extension of the Riemann hypothesis to all global L-functions, not just the special case of Dirichlet L-functions.)

Generalized Riemann hypothesis (GRH)

The generalized Riemann hypothesis (for Dirichlet L-functions) was probably formulated for the first time by Adolf Piltz in 1884. [1] Like the original Riemann hypothesis, it has far reaching consequences about the distribution of prime numbers.

The formal statement of the hypothesis follows. A Dirichlet character is a completely multiplicative arithmetic function χ such that there exists a positive integer k with χ(n + k) = χ(n) for all n and χ(n) = 0 whenever gcd(n, k) > 1. If such a character is given, we define the corresponding Dirichlet L-function by

for every complex number s such that Re s > 1. By analytic continuation, this function can be extended to a meromorphic function (only when is primitive) defined on the whole complex plane. The generalized Riemann hypothesis asserts that, for every Dirichlet character χ and every complex number s with L(χ, s) = 0, if s is not a negative real number, then the real part of s is 1/2.

The case χ(n) = 1 for all n yields the ordinary Riemann hypothesis.

Consequences of GRH

Dirichlet's theorem states that if a and d are coprime natural numbers, then the arithmetic progression a, a + d, a + 2d, a + 3d, ... contains infinitely many prime numbers. Let π(x, a, d) denote the number of prime numbers in this progression which are less than or equal to x. If the generalized Riemann hypothesis is true, then for every coprime a and d and for every ε > 0,

where is Euler's totient function and is the Big O notation. This is a considerable strengthening of the prime number theorem.

If GRH is true, then every proper subgroup of the multiplicative group omits a number less than 2(ln n)2, as well as a number coprime to n less than 3(ln n)2. [2] In other words, is generated by a set of numbers less than 2(ln n)2. This is often used in proofs, and it has many consequences, for example (assuming GRH):

If GRH is true, then for every prime p there exists a primitive root mod p (a generator of the multiplicative group of integers modulo p) that is less than [4]

Goldbach's weak conjecture also follows from the generalized Riemann hypothesis. The yet to be verified proof of Harald Helfgott of this conjecture verifies the GRH for several thousand small characters up to a certain imaginary part to obtain sufficient bounds that prove the conjecture for all integers above 1029, integers below which have already been verified by calculation. [5]

Assuming the truth of the GRH, the estimate of the character sum in the Pólya–Vinogradov inequality can be improved to , q being the modulus of the character.

Extended Riemann hypothesis (ERH)

Suppose K is a number field (a finite-dimensional field extension of the rationals Q) with ring of integers OK (this ring is the integral closure of the integers Z in K). If a is an ideal of OK, other than the zero ideal, we denote its norm by Na. The Dedekind zeta-function of K is then defined by

for every complex number s with real part > 1. The sum extends over all non-zero ideals a of OK.

The Dedekind zeta-function satisfies a functional equation and can be extended by analytic continuation to the whole complex plane. The resulting function encodes important information about the number field K. The extended Riemann hypothesis asserts that for every number field K and every complex number s with ζK(s) = 0: if the real part of s is between 0 and 1, then it is in fact 1/2.

The ordinary Riemann hypothesis follows from the extended one if one takes the number field to be Q, with ring of integers Z.

The ERH implies an effective version [6] of the Chebotarev density theorem: if L/K is a finite Galois extension with Galois group G, and C a union of conjugacy classes of G, the number of unramified primes of K of norm below x with Frobenius conjugacy class in C is

where the constant implied in the big-O notation is absolute, n is the degree of L over Q, and Δ its discriminant.

See also

Related Research Articles

In mathematics, the prime number theorem (PNT) describes the asymptotic distribution of the prime numbers among the positive integers. It formalizes the intuitive idea that primes become less common as they become larger by precisely quantifying the rate at which this occurs. The theorem was proved independently by Jacques Hadamard and Charles Jean de la Vallée Poussin in 1896 using ideas introduced by Bernhard Riemann.

<span class="mw-page-title-main">Riemann zeta function</span> Analytic function in mathematics

The Riemann zeta function or Euler–Riemann zeta function, denoted by the Greek letter ζ (zeta), is a mathematical function of a complex variable defined as

<span class="mw-page-title-main">Algebraic number theory</span> Branch of number theory

Algebraic number theory is a branch of number theory that uses the techniques of abstract algebra to study the integers, rational numbers, and their generalizations. Number-theoretic questions are expressed in terms of properties of algebraic objects such as algebraic number fields and their rings of integers, finite fields, and function fields. These properties, such as whether a ring admits unique factorization, the behavior of ideals, and the Galois groups of fields, can resolve questions of primary importance in number theory, like the existence of solutions to Diophantine equations.

<span class="mw-page-title-main">Harmonic number</span> Sum of the first n whole number reciprocals; 1/1 + 1/2 + 1/3 + ... + 1/n

In mathematics, the n-th harmonic number is the sum of the reciprocals of the first n natural numbers:

<span class="mw-page-title-main">Analytic number theory</span> Exploring properties of the integers with complex analysis

In mathematics, analytic number theory is a branch of number theory that uses methods from mathematical analysis to solve problems about the integers. It is often said to have begun with Peter Gustav Lejeune Dirichlet's 1837 introduction of Dirichlet L-functions to give the first proof of Dirichlet's theorem on arithmetic progressions. It is well known for its results on prime numbers and additive number theory.

In mathematics, a Dirichlet L-series is a function of the form

<span class="mw-page-title-main">Hurwitz zeta function</span> Special function in mathematics

In mathematics, the Hurwitz zeta function is one of the many zeta functions. It is formally defined for complex variables s with Re(s) > 1 and a ≠ 0, −1, −2, … by

Chebotarev's density theorem in algebraic number theory describes statistically the splitting of primes in a given Galois extension K of the field of rational numbers. Generally speaking, a prime integer will factor into several ideal primes in the ring of algebraic integers of K. There are only finitely many patterns of splitting that may occur. Although the full description of the splitting of every prime p in a general Galois extension is a major unsolved problem, the Chebotarev density theorem says that the frequency of the occurrence of a given pattern, for all primes p less than a large integer N, tends to a certain limit as N goes to infinity. It was proved by Nikolai Chebotaryov in his thesis in 1922, published in.

In mathematics, the Dedekind zeta function of an algebraic number field K, generally denoted ζK(s), is a generalization of the Riemann zeta function (which is obtained in the case where K is the field of rational numbers Q). It can be defined as a Dirichlet series, it has an Euler product expansion, it satisfies a functional equation, it has an analytic continuation to a meromorphic function on the complex plane C with only a simple pole at s = 1, and its values encode arithmetic data of K. The extended Riemann hypothesis states that if ζK(s) = 0 and 0 < Re(s) < 1, then Re(s) = 1/2.

In mathematics, more specifically in the field of analytic number theory, a Landau–Siegel zero or simply Siegel zero, named after Edmund Landau and Carl Ludwig Siegel, is a type of potential counterexample to the generalized Riemann hypothesis, on the zeros of Dirichlet L-functions associated to quadratic number fields. Roughly speaking, these are possible zeros very near to .

In mathematics, the Selberg class is an axiomatic definition of a class of L-functions. The members of the class are Dirichlet series which obey four axioms that seem to capture the essential properties satisfied by most functions that are commonly called L-functions or zeta functions. Although the exact nature of the class is conjectural, the hope is that the definition of the class will lead to a classification of its contents and an elucidation of its properties, including insight into their relationship to automorphic forms and the Riemann hypothesis. The class was defined by Atle Selberg in, who preferred not to use the word "axiom" that later authors have employed.

In mathematics, the explicit formulae for L-functions are relations between sums over the complex number zeroes of an L-function and sums over prime powers, introduced by Riemann (1859) for the Riemann zeta function. Such explicit formulae have been applied also to questions on bounding the discriminant of an algebraic number field, and the conductor of a number field.

In number theory, the class number formula relates many important invariants of a number field to a special value of its Dedekind zeta function.

In mathematics, the multiplication theorem is a certain type of identity obeyed by many special functions related to the gamma function. For the explicit case of the gamma function, the identity is a product of values; thus the name. The various relations all stem from the same underlying principle; that is, the relation for one special function can be derived from that for the others, and is simply a manifestation of the same identity in different guises.

In mathematics, the prime zeta function is an analogue of the Riemann zeta function, studied by Glaisher (1891). It is defined as the following infinite series, which converges for :

<span class="mw-page-title-main">Riemann hypothesis</span> Conjecture on zeros of the zeta function

In mathematics, the Riemann hypothesis is the conjecture that the Riemann zeta function has its zeros only at the negative even integers and complex numbers with real part 1/2. Many consider it to be the most important unsolved problem in pure mathematics. It is of great interest in number theory because it implies results about the distribution of prime numbers. It was proposed by Bernhard Riemann (1859), after whom it is named.

<span class="mw-page-title-main">Anatoly Karatsuba</span> Russian mathematician

Anatoly Alexeyevich Karatsuba was a Russian mathematician working in the field of analytic number theory, p-adic numbers and Dirichlet series.

<span class="mw-page-title-main">Algebraic number field</span> Finite degree (and hence algebraic) field extension of the field of rational numbers

In mathematics, an algebraic number field is an extension field of the field of rational numbers such that the field extension has finite degree . Thus is a field that contains and has finite dimension when considered as a vector space over .

In mathematics, the arithmetic zeta function is a zeta function associated with a scheme of finite type over integers. The arithmetic zeta function generalizes the Riemann zeta function and Dedekind zeta function to higher dimensions. The arithmetic zeta function is one of the most-fundamental objects of number theory.

References

  1. Davenport, Harold (2000). Multiplicative Number Theory. Graduate Texts in Mathematics. Vol. 74. Revised and with a preface by Hugh L. Montgomery (Third ed.). New York: Springer-Verlag. p. 124. ISBN   0-387-95097-4.
  2. Bach, Eric (1990). "Explicit bounds for primality testing and related problems". Mathematics of Computation . 55 (191): 355–380. doi: 10.2307/2008811 . JSTOR   2008811.
  3. Ivanyos, Gabor; Karpinski, Marek; Saxena, Nitin (2009). "Schemes for deterministic polynomial factoring". Proceedings of the 2009 international symposium on Symbolic and algebraic computation. pp. 191–198. arXiv: 0804.1974 . doi:10.1145/1576702.1576730. ISBN   9781605586090. S2CID   15895636.{{cite book}}: |journal= ignored (help)
  4. Shoup, Victor (1992). "Searching for primitive roots in finite fields". Mathematics of Computation. 58 (197): 369–380. doi: 10.2307/2153041 . JSTOR   2153041.
  5. p5. Helfgott, Harald (2013). "Major arcs for Goldbach's theorem". arXiv: 1305.2897 [math.NT].
  6. Lagarias, J.C.; Odlyzko, A.M. (1977). "Effective Versions of the Chebotarev Theorem". Algebraic Number Fields: 409–464.

Further reading