Selberg class

Last updated

In mathematics, the Selberg class is an axiomatic definition of a class of L-functions. The members of the class are Dirichlet series which obey four axioms that seem to capture the essential properties satisfied by most functions that are commonly called L-functions or zeta functions. Although the exact nature of the class is conjectural, the hope is that the definition of the class will lead to a classification of its contents and an elucidation of its properties, including insight into their relationship to automorphic forms and the Riemann hypothesis. The class was defined by Atle Selberg in ( Selberg 1992 ), who preferred not to use the word "axiom" that later authors have employed. [1]

Contents

Definition

The formal definition of the class S is the set of all Dirichlet series

absolutely convergent for Re(s) > 1 that satisfy four axioms (or assumptions as Selberg calls them):

  1. Analyticity: has a meromorphic continuation to the entire complex plane, with the only possible pole (if any) when s equals 1.
  2. Ramanujan conjecture: a1 = 1 and for any ε > 0;
  3. Functional equation: there is a gamma factor of the form

    where Q is real and positive, Γ the gamma function, the ωi real and positive, and the μi complex with non-negative real part, as well as a so-called root number

    ,

    such that the function

    satisfies

  4. Euler product: For Re(s) > 1, F(s) can be written as a product over primes:

    with

    and, for some θ < 1/2,

Comments on definition

The condition that the real part of μi be non-negative is because there are known L-functions that do not satisfy the Riemann hypothesis when μi is negative. Specifically, there are Maass forms associated with exceptional eigenvalues, for which the Ramanujan–Peterssen conjecture holds, and have a functional equation, but do not satisfy the Riemann hypothesis.

The condition that θ< 1/2 is important, as the θ = 1 case includes whose zeros are not on the critical line.

Without the condition there would be which violates the Riemann hypothesis.

It is a consequence of 4. that the an are multiplicative and that

Examples

The prototypical example of an element in S is the Riemann zeta function. [2] Another example, is the L-function of the modular discriminant Δ

where and τ(n) is the Ramanujan tau function. [3]

All known examples are automorphic L-functions, and the reciprocals of Fp(s) are polynomials in ps of bounded degree. [4]

The best results on the structure of the Selberg class are due to Kaczorowski and Perelli, who show that the Dirichlet L-functions (including the Riemann zeta-function) are the only examples with degree less than 2. [5]

Basic properties

As with the Riemann zeta function, an element F of S has trivial zeroes that arise from the poles of the gamma factor γ(s). The other zeroes are referred to as the non-trivial zeroes of F. These will all be located in some strip 1 A ≤ Re(s) ≤ A. Denoting the number of non-trivial zeroes of F with 0 ≤ Im(s) ≤ T by NF(T), [6] Selberg showed that

Here, dF is called the degree (or dimension) of F. It is given by [7]

It can be shown that F = 1 is the only function in S whose degree is less than 1.

If F and G are in the Selberg class, then so is their product and

A function F ≠ 1 in S is called primitive if whenever it is written as F = F1F2, with Fi in S, then F = F1 or F = F2. If dF = 1, then F is primitive. Every function F ≠ 1 of S can be written as a product of primitive functions. Selberg's conjectures, described below, imply that the factorization into primitive functions is unique.

Examples of primitive functions include the Riemann zeta function and Dirichlet L-functions of primitive Dirichlet characters. Assuming conjectures 1 and 2 below, L-functions of irreducible cuspidal automorphic representations that satisfy the Ramanujan conjecture are primitive. [8]

Selberg's conjectures

In ( Selberg 1992 ), Selberg made conjectures concerning the functions in S:

Consequences of the conjectures

Conjectures 1 and 2 imply that if F has a pole of order m at s = 1, then F(s)/ζ(s)m is entire. In particular, they imply Dedekind's conjecture. [9]

M. Ram Murty showed in ( Murty 1994 ) that conjectures 1 and 2 imply the Artin conjecture. In fact, Murty showed that Artin L-functions corresponding to irreducible representations of the Galois group of a solvable extension of the rationals are automorphic as predicted by the Langlands conjectures. [10]

The functions in S also satisfy an analogue of the prime number theorem: F(s) has no zeroes on the line Re(s) = 1. As mentioned above, conjectures 1 and 2 imply the unique factorization of functions in S into primitive functions. Another consequence is that the primitivity of F is equivalent to nF = 1. [11]

See also

Notes

  1. The title of Selberg's paper is somewhat a spoof on Paul Erdős, who had many papers named (approximately) "(Some) Old and new problems and results about...". Indeed, the 1989 Amalfi conference was quite surprising in that both Selberg and Erdős were present, with the story being that Selberg did not know that Erdős was to attend.
  2. Murty 2008
  3. Murty 2008
  4. Murty 1994
  5. Jerzy Kaczorowski & Alberto Perelli (2011). "On the structure of the Selberg class, VII" (PDF). Annals of Mathematics. 173: 1397–1441. doi: 10.4007/annals.2011.173.3.4 .
  6. The zeroes on the boundary are counted with half-multiplicity.
  7. While the ωi are not uniquely defined by F, Selberg's result shows that their sum is well-defined.
  8. Murty 1994 , Lemma 4.2
  9. A celebrated conjecture of Dedekind asserts that for any finite algebraic extension of , the zeta function is divisible by the Riemann zeta function . That is, the quotient is entire. More generally, Dedekind conjectures that if is a finite extension of , then should be entire. This conjecture is still open.
  10. Murty 1994 , Theorem 4.3
  11. Conrey & Ghosh 1993 , § 4

Related Research Articles

In mathematics, the prime number theorem (PNT) describes the asymptotic distribution of the prime numbers among the positive integers. It formalizes the intuitive idea that primes become less common as they become larger by precisely quantifying the rate at which this occurs. The theorem was proved independently by Jacques Hadamard and Charles Jean de la Vallée Poussin in 1896 using ideas introduced by Bernhard Riemann.

<span class="mw-page-title-main">Riemann zeta function</span> Analytic function in mathematics

The Riemann zeta function or Euler–Riemann zeta function, denoted by the Greek letter ζ (zeta), is a mathematical function of a complex variable defined as

The Riemann hypothesis is one of the most important conjectures in mathematics. It is a statement about the zeros of the Riemann zeta function. Various geometrical and arithmetical objects can be described by so-called global L-functions, which are formally similar to the Riemann zeta-function. One can then ask the same question about the zeros of these L-functions, yielding various generalizations of the Riemann hypothesis. Many mathematicians believe these generalizations of the Riemann hypothesis to be true. The only cases of these conjectures which have been proven occur in the algebraic function field case.

<span class="mw-page-title-main">Analytic number theory</span> Exploring properties of the integers with complex analysis

In mathematics, analytic number theory is a branch of number theory that uses methods from mathematical analysis to solve problems about the integers. It is often said to have begun with Peter Gustav Lejeune Dirichlet's 1837 introduction of Dirichlet L-functions to give the first proof of Dirichlet's theorem on arithmetic progressions. It is well known for its results on prime numbers and additive number theory.

In mathematics, a Dirichlet series is any series of the form

In mathematics, a Dirichlet L-series is a function of the form

<span class="mw-page-title-main">Hurwitz zeta function</span> Special function in mathematics

In mathematics, the Hurwitz zeta function is one of the many zeta functions. It is formally defined for complex variables s with Re(s) > 1 and a ≠ 0, −1, −2, … by

<span class="mw-page-title-main">Mertens function</span>

In number theory, the Mertens function is defined for all positive integers n as

In mathematics, the L-functions of number theory are expected to have several characteristic properties, one of which is that they satisfy certain functional equations. There is an elaborate theory of what these equations should be, much of which is still conjectural.

In mathematics, the Selberg trace formula, introduced by Selberg (1956), is an expression for the character of the unitary representation of a Lie group G on the space L2(Γ\G) of square-integrable functions, where Γ is a cofinite discrete group. The character is given by the trace of certain functions on G.

In mathematics, the Dedekind zeta function of an algebraic number field K, generally denoted ζK(s), is a generalization of the Riemann zeta function. It can be defined as a Dirichlet series, it has an Euler product expansion, it satisfies a functional equation, it has an analytic continuation to a meromorphic function on the complex plane C with only a simple pole at s = 1, and its values encode arithmetic data of K. The extended Riemann hypothesis states that if ζK(s) = 0 and 0 < Re(s) < 1, then Re(s) = 1/2.

In mathematics, more specifically in the field of analytic number theory, a Landau–Siegel zero or simply Siegel zero, named after Edmund Landau and Carl Ludwig Siegel, is a type of potential counterexample to the generalized Riemann hypothesis, on the zeros of Dirichlet L-functions associated to quadratic number fields. Roughly speaking, these are possible zeros very near to .

In mathematics, the explicit formulae for L-functions are relations between sums over the complex number zeroes of an L-function and sums over prime powers, introduced by Riemann (1859) for the Riemann zeta function. Such explicit formulae have been applied also to questions on bounding the discriminant of an algebraic number field, and the conductor of a number field.

In mathematics, an Artin L-function is a type of Dirichlet series associated to a linear representation ρ of a Galois group G. These functions were introduced in 1923 by Emil Artin, in connection with his research into class field theory. Their fundamental properties, in particular the Artin conjecture described below, have turned out to be resistant to easy proof. One of the aims of proposed non-abelian class field theory is to incorporate the complex-analytic nature of Artin L-functions into a larger framework, such as is provided by automorphic forms and the Langlands program. So far, only a small part of such a theory has been put on a firm basis.

The Selberg zeta-function was introduced by Atle Selberg (1956). It is analogous to the famous Riemann zeta function

In mathematics, the multiplication theorem is a certain type of identity obeyed by many special functions related to the gamma function. For the explicit case of the gamma function, the identity is a product of values; thus the name. The various relations all stem from the same underlying principle; that is, the relation for one special function can be derived from that for the others, and is simply a manifestation of the same identity in different guises.

In mathematics, the prime zeta function is an analogue of the Riemann zeta function, studied by Glaisher (1891). It is defined as the following infinite series, which converges for :

<span class="mw-page-title-main">Riemann hypothesis</span> Conjecture on zeros of the zeta function

In mathematics, the Riemann hypothesis is the conjecture that the Riemann zeta function has its zeros only at the negative even integers and complex numbers with real part 1/2. Many consider it to be the most important unsolved problem in pure mathematics. It is of great interest in number theory because it implies results about the distribution of prime numbers. It was proposed by Bernhard Riemann (1859), after whom it is named.

<span class="mw-page-title-main">Anatoly Karatsuba</span> Russian mathematician

Anatoly Alexeyevich Karatsuba was a Russian mathematician working in the field of analytic number theory, p-adic numbers and Dirichlet series.

<span class="mw-page-title-main">Montgomery's pair correlation conjecture</span>

In mathematics, Montgomery's pair correlation conjecture is a conjecture made by Hugh Montgomery (1973) that the pair correlation between pairs of zeros of the Riemann zeta function is

References