In mathematics, a p-adic zeta function, or more generally a p-adic L-function, is a function analogous to the Riemann zeta function, or more general L-functions, but whose domain and target are p-adic (where p is a prime number). For example, the domain could be the p-adic integers Zp, a profinite p-group, or a p-adic family of Galois representations, and the image could be the p-adic numbers Qp or its algebraic closure.
The source of a p-adic L-function tends to be one of two types. The first source—from which Tomio Kubota and Heinrich-Wolfgang Leopoldt gave the first construction of a p-adic L-function ( Kubota & Leopoldt 1964 )—is via the p-adic interpolation of special values of L-functions. For example, Kubota–Leopoldt used Kummer's congruences for Bernoulli numbers to construct a p-adic L-function, the p-adic Riemann zeta function ζp(s), whose values at negative odd integers are those of the Riemann zeta function at negative odd integers (up to an explicit correction factor). p-adic L-functions arising in this fashion are typically referred to as analytic p-adic L-functions. The other major source of p-adic L-functions—first discovered by Kenkichi Iwasawa —is from the arithmetic of cyclotomic fields, or more generally, certain Galois modules over towers of cyclotomic fields or even more general towers. A p-adic L-function arising in this way is typically called an arithmetic p-adic L-function as it encodes arithmetic data of the Galois module involved. The main conjecture of Iwasawa theory (now a theorem due to Barry Mazur and Andrew Wiles) is the statement that the Kubota–Leopoldt p-adic L-function and an arithmetic analogue constructed by Iwasawa theory are essentially the same. In more general situations where both analytic and arithmetic p-adic L-functions are constructed (or expected), the statement that they agree is called the main conjecture of Iwasawa theory for that situation. Such conjectures represent formal statements concerning the philosophy that special values of L-functions contain arithmetic information.
The Dirichlet L-function is given by the analytic continuation of
The Dirichlet L-function at negative integers is given by
where Bn,χ is a generalized Bernoulli number defined by
for χ a Dirichlet character with conductor f.
The Kubota–Leopoldt p-adic L-function Lp(s, χ) interpolates the Dirichlet L-function with the Euler factor at p removed. More precisely, Lp(s, χ) is the unique continuous function of the p-adic number s such that
for positive integers n divisible by p − 1. The right hand side is just the usual Dirichlet L-function, except that the Euler factor at p is removed, otherwise it would not be p-adically continuous. The continuity of the right hand side is closely related to the Kummer congruences.
When n is not divisible by p − 1 this does not usually hold; instead
for positive integers n. Here χ is twisted by a power of the Teichmüller character ω.
p-adic L-functions can also be thought of as p-adic measures (or p-adic distributions) on p-profinite Galois groups. The translation between this point of view and the original point of view of Kubota–Leopoldt (as Qp-valued functions on Zp) is via the Mazur–Mellin transform (and class field theory).
Deligne & Ribet (1980), building upon previous work of Serre (1973), constructed analytic p-adic L-functions for totally real fields. Independently, Barsky (1978) and Cassou-Noguès (1979) did the same, but their approaches followed Takuro Shintani's approach to the study of the L-values.
The Riemann zeta function or Euler–Riemann zeta function, denoted by the Greek letter ζ (zeta), is a mathematical function of a complex variable defined as for , and its analytic continuation elsewhere.
The Riemann hypothesis is one of the most important conjectures in mathematics. It is a statement about the zeros of the Riemann zeta function. Various geometrical and arithmetical objects can be described by so-called global L-functions, which are formally similar to the Riemann zeta-function. One can then ask the same question about the zeros of these L-functions, yielding various generalizations of the Riemann hypothesis. Many mathematicians believe these generalizations of the Riemann hypothesis to be true. The only cases of these conjectures which have been proven occur in the algebraic function field case.
In number theory, Iwasawa theory is the study of objects of arithmetic interest over infinite towers of number fields. It began as a Galois module theory of ideal class groups, initiated by Kenkichi Iwasawa, as part of the theory of cyclotomic fields. In the early 1970s, Barry Mazur considered generalizations of Iwasawa theory to abelian varieties. More recently, Ralph Greenberg has proposed an Iwasawa theory for motives.
In mathematics, a Dirichlet L-series is a function of the form
In mathematics, in the area of number theory, a Gaussian period is a certain kind of sum of roots of unity. The periods permit explicit calculations in cyclotomic fields connected with Galois theory and with harmonic analysis. They are basic in the classical theory called cyclotomy. Closely related is the Gauss sum, a type of exponential sum which is a linear combination of periods.
In mathematics, Dirichlet's unit theorem is a basic result in algebraic number theory due to Peter Gustav Lejeune Dirichlet. It determines the rank of the group of units in the ring OK of algebraic integers of a number field K. The regulator is a positive real number that determines how "dense" the units are.
Chebotarev's density theorem in algebraic number theory describes statistically the splitting of primes in a given Galois extension K of the field of rational numbers. Generally speaking, a prime integer will factor into several ideal primes in the ring of algebraic integers of K. There are only finitely many patterns of splitting that may occur. Although the full description of the splitting of every prime p in a general Galois extension is a major unsolved problem, the Chebotarev density theorem says that the frequency of the occurrence of a given pattern, for all primes p less than a large integer N, tends to a certain limit as N goes to infinity. It was proved by Nikolai Chebotaryov in his thesis in 1922, published in.
In mathematics, the Dedekind zeta function of an algebraic number field K, generally denoted ζK(s), is a generalization of the Riemann zeta function (which is obtained in the case where K is the field of rational numbers Q). It can be defined as a Dirichlet series, it has an Euler product expansion, it satisfies a functional equation, it has an analytic continuation to a meromorphic function on the complex plane C with only a simple pole at s = 1, and its values encode arithmetic data of K. The extended Riemann hypothesis states that if ζK(s) = 0 and 0 < Re(s) < 1, then Re(s) = 1/2.
In mathematics, more specifically in the field of analytic number theory, a Landau–Siegel zero or simply Siegel zero, also known as exceptional zero), named after Edmund Landau and Carl Ludwig Siegel, is a type of potential counterexample to the generalized Riemann hypothesis, on the zeros of Dirichlet L-functions associated to quadratic number fields. Roughly speaking, these are possible zeros very near to .
In mathematics, the Selberg class is an axiomatic definition of a class of L-functions. The members of the class are Dirichlet series which obey four axioms that seem to capture the essential properties satisfied by most functions that are commonly called L-functions or zeta functions. Although the exact nature of the class is conjectural, the hope is that the definition of the class will lead to a classification of its contents and an elucidation of its properties, including insight into their relationship to automorphic forms and the Riemann hypothesis. The class was defined by Atle Selberg in, who preferred not to use the word "axiom" that later authors have employed.
In number theory, the class number formula relates many important invariants of an algebraic number field to a special value of its Dedekind zeta function.
In number theory, a Hecke character is a generalisation of a Dirichlet character, introduced by Erich Hecke to construct a class of L-functions larger than Dirichlet L-functions, and a natural setting for the Dedekind zeta-functions and certain others which have functional equations analogous to that of the Riemann zeta-function.
In mathematics, and more particularly in analytic number theory, Perron's formula is a formula due to Oskar Perron to calculate the sum of an arithmetic function, by means of an inverse Mellin transform.
In algebraic number theory, a Gauss sum or Gaussian sum is a particular kind of finite sum of roots of unity, typically
In mathematics, the Riemann–von Mangoldt formula, named for Bernhard Riemann and Hans Carl Friedrich von Mangoldt, describes the distribution of the zeros of the Riemann zeta function.
In number theory, a cyclotomic character is a character of a Galois group giving the Galois action on a group of roots of unity. As a one-dimensional representation over a ring R, its representation space is generally denoted by R(1) (that is, it is a representation χ : G → AutR(R(1)) ≈ GL(1, R)).
In mathematics, the Riemann hypothesis is the conjecture that the Riemann zeta function has its zeros only at the negative even integers and complex numbers with real part 1/2. Many consider it to be the most important unsolved problem in pure mathematics. It is of great interest in number theory because it implies results about the distribution of prime numbers. It was proposed by Bernhard Riemann, after whom it is named.
Anatoly Alexeyevich Karatsuba was a Russian mathematician working in the field of analytic number theory, p-adic numbers and Dirichlet series.
In mathematics, the main conjecture of Iwasawa theory is a deep relationship between p-adic L-functions and ideal class groups of cyclotomic fields, proved by Kenkichi Iwasawa for primes satisfying the Kummer–Vandiver conjecture and proved for all primes by Mazur and Wiles. The Herbrand–Ribet theorem and the Gras conjecture are both easy consequences of the main conjecture. There are several generalizations of the main conjecture, to totally real fields, CM fields, elliptic curves, and so on.
In mathematics, Kummer's congruences are some congruences involving Bernoulli numbers, found by Ernst Eduard Kummer.