Algebraic function field

Last updated

In mathematics, an algebraic function field (often abbreviated as function field) of n variables over a field k is a finitely generated field extension K/k which has transcendence degree n over k. [1] Equivalently, an algebraic function field of n variables over k may be defined as a finite field extension of the field K = k(x1,...,xn) of rational functions in n variables over k.

Contents

Example

As an example, in the polynomial ring k[X,Y] consider the ideal generated by the irreducible polynomial Y2X3 and form the field of fractions of the quotient ring k[X,Y]/(Y2X3). This is a function field of one variable over k; it can also be written as (with degree 2 over ) or as (with degree 3 over ). We see that the degree of an algebraic function field is not a well-defined notion.

Category structure

The algebraic function fields over k form a category; the morphisms from function field K to L are the ring homomorphisms f : KL with f(a) = a for all a in k. All these morphisms are injective. If K is a function field over k of n variables, and L is a function field in m variables, and n > m, then there are no morphisms from K to L.

Function fields arising from varieties, curves and Riemann surfaces

The function field of an algebraic variety of dimension n over k is an algebraic function field of n variables over k. Two varieties are birationally equivalent if and only if their function fields are isomorphic. (But note that non-isomorphic varieties may have the same function field!) Assigning to each variety its function field yields a duality (contravariant equivalence) between the category of varieties over k (with dominant rational maps as morphisms) and the category of algebraic function fields over k. (The varieties considered here are to be taken in the scheme sense; they need not have any k-rational points, like the curve X2 + Y2 + 1 = 0 defined over the reals, that is with k = R.)

The case n=1 (irreducible algebraic curves in the scheme sense) is especially important, since every function field of one variable over k arises as the function field of a uniquely defined regular (i.e. non-singular) projective irreducible algebraic curve over k. In fact, the function field yields a duality between the category of regular projective irreducible algebraic curves (with dominant regular maps as morphisms) and the category of function fields of one variable over k.

The field M(X) of meromorphic functions defined on a connected Riemann surface X is a function field of one variable over the complex numbers C. In fact, M yields a duality (contravariant equivalence) between the category of compact connected Riemann surfaces (with non-constant holomorphic maps as morphisms) and function fields of one variable over C. A similar correspondence exists between compact connected Klein surfaces and function fields in one variable over R.

Number fields and finite fields

The function field analogy states that almost all theorems on number fields have a counterpart on function fields of one variable over a finite field, and these counterparts are frequently easier to prove. (For example, see Analogue for irreducible polynomials over a finite field.) In the context of this analogy, both number fields and function fields over finite fields are usually called "global fields".

The study of function fields over a finite field has applications in cryptography and error correcting codes. For example, the function field of an elliptic curve over a finite field (an important mathematical tool for public key cryptography) is an algebraic function field.

Function fields over the field of rational numbers play also an important role in solving inverse Galois problems.

Field of constants

Given any algebraic function field K over k, we can consider the set of elements of K which are algebraic over k. These elements form a field, known as the field of constants of the algebraic function field.

For instance, C(x) is a function field of one variable over R; its field of constants is C.

Valuations and places

Key tools to study algebraic function fields are absolute values, valuations, places and their completions.

Given an algebraic function field K/k of one variable, we define the notion of a valuation ring of K/k: this is a subring O of K that contains k and is different from k and K, and such that for any x in K we have xO or x -1O. Each such valuation ring is a discrete valuation ring and its maximal ideal is called a place of K/k.

A discrete valuation of K/k is a surjective function v : KZ∪{} such that v(x)= iff x=0, v(xy) = v(x)+v(y) and v(x+y) ≥ min(v(x),v(y)) for all x,yK, and v(a)=0 for all ak\{0}.

There are natural bijective correspondences between the set of valuation rings of K/k, the set of places of K/k, and the set of discrete valuations of K/k. These sets can be given a natural topological structure: the Zariski–Riemann space of K/k.

See also

Related Research Articles

Algebraic geometry Branch of mathematics

Algebraic geometry is a branch of mathematics, classically studying zeros of multivariate polynomials. Modern algebraic geometry is based on the use of abstract algebraic techniques, mainly from commutative algebra, for solving geometrical problems about these sets of zeros.

In commutative algebra, the prime spectrum of a ring R is the set of all prime ideals of R, and is usually denoted by ; in algebraic geometry it is simultaneously a topological space equipped with the sheaf of rings .

In mathematics, an irreducible polynomial is, roughly speaking, a polynomial that cannot be factored into the product of two non-constant polynomials. The property of irreducibility depends on the nature of the coefficients that are accepted for the possible factors, that is, the field to which the coefficients of the polynomial and its possible factors are supposed to belong. For example, the polynomial x2 − 2 is a polynomial with integer coefficients, but, as every integer is also a real number, it is also a polynomial with real coefficients. It is irreducible if it is considered as a polynomial with integer coefficients, but it factors as if it is considered as a polynomial with real coefficients. One says that the polynomial x2 − 2 is irreducible over the integers but not over the reals.

Abelian variety

In mathematics, particularly in algebraic geometry, complex analysis and algebraic number theory, an abelian variety is a projective algebraic variety that is also an algebraic group, i.e., has a group law that can be defined by regular functions. Abelian varieties are at the same time among the most studied objects in algebraic geometry and indispensable tools for much research on other topics in algebraic geometry and number theory.

Algebraic variety Mathematical object studied in the field of algebraic geometry

Algebraic varieties are the central objects of study in algebraic geometry, a sub-field of mathematics. Classically, an algebraic variety is defined as the set of solutions of a system of polynomial equations over the real or complex numbers. Modern definitions generalize this concept in several different ways, while attempting to preserve the geometric intuition behind the original definition.

Algebraic curve Curve defined as zeros of polynomials

In mathematics, an affine algebraic plane curve is the zero set of a polynomial in two variables. A projective algebraic plane curve is the zero set in a projective plane of a homogeneous polynomial in three variables. An affine algebraic plane curve can be completed in a projective algebraic plane curve by homogenizing its defining polynomial. Conversely, a projective algebraic plane curve of homogeneous equation h(x, y, t) = 0 can be restricted to the affine algebraic plane curve of equation h(x, y, 1) = 0. These two operations are each inverse to the other; therefore, the phrase algebraic plane curve is often used without specifying explicitly whether it is the affine or the projective case that is considered.

In mathematics, a global field is one of two type of fields which are characterized using valuations. There are two kinds of global fields:

Affine variety Algebraic variety defined within an affine space

In algebraic geometry, an affine variety, or affine algebraic variety, over an algebraically closed field k is the zero-locus in the affine space kn of some finite family of polynomials of n variables with coefficients in k that generate a prime ideal. If the condition of generating a prime ideal is removed, such a set is called an (affine) algebraic set. A Zariski open subvariety of an affine variety is called a quasi-affine variety.

Projective variety

In algebraic geometry, a projective variety over an algebraically closed field k is a subset of some projective n-space over k that is the zero-locus of some finite family of homogeneous polynomials of n + 1 variables with coefficients in k, that generate a prime ideal, the defining ideal of the variety. Equivalently, an algebraic variety is projective if it can be embedded as a Zariski closed subvariety of .

In mathematics, a scheme is a mathematical structure that enlarges the notion of algebraic variety in several ways, such as taking account of multiplicities and allowing "varieties" defined over any commutative ring.

In mathematics, algebraic geometry and analytic geometry are two closely related subjects. While algebraic geometry studies algebraic varieties, analytic geometry deals with complex manifolds and the more general analytic spaces defined locally by the vanishing of analytic functions of several complex variables. The deep relation between these subjects has numerous applications in which algebraic techniques are applied to analytic spaces and analytic techniques to algebraic varieties.

In abstract algebra, a discrete valuation ring (DVR) is a principal ideal domain (PID) with exactly one non-zero maximal ideal.

In algebraic geometry, divisors are a generalization of codimension-1 subvarieties of algebraic varieties. Two different generalizations are in common use, Cartier divisors and Weil divisors. Both are derived from the notion of divisibility in the integers and algebraic number fields.

In algebraic geometry, an algebraic variety or scheme X is normal if it is normal at every point, meaning that the local ring at the point is an integrally closed domain. An affine variety X is normal if and only if the ring O(X) of regular functions on X is an integrally closed domain. A variety X over a field is normal if and only if every finite birational morphism from any variety Y to X is an isomorphism.

In algebraic geometry, the function field of an algebraic variety V consists of objects which are interpreted as rational functions on V. In classical algebraic geometry they are ratios of polynomials; in complex algebraic geometry these are meromorphic functions and their higher-dimensional analogues; in modern algebraic geometry they are elements of some quotient ring's field of fractions.

In algebraic geometry, the Chow groups of an algebraic variety over any field are algebro-geometric analogs of the homology of a topological space. The elements of the Chow group are formed out of subvarieties in a similar way to how simplicial or cellular homology groups are formed out of subcomplexes. When the variety is smooth, the Chow groups can be interpreted as cohomology groups and have a multiplication called the intersection product. The Chow groups carry rich information about an algebraic variety, and they are correspondingly hard to compute in general.

In mathematics, a finitely generated algebra is a commutative associative algebra A over a field K where there exists a finite set of elements a1,...,an of A such that every element of A can be expressed as a polynomial in a1,...,an, with coefficients in K.

Difference algebra is a branch of mathematics concerned with the study of difference equations from the algebraic point of view. Difference algebra is analogous to differential algebra but concerned with difference equations rather than differential equations. As an independent subject it was initiated by Joseph Ritt and his student Richard Cohn.

In algebraic geometry, a morphism between algebraic varieties is a function between the varieties that is given locally by polynomials. It is also called a regular map. A morphism from an algebraic variety to the affine line is also called a regular function. A regular map whose inverse is also regular is called biregular, and they are isomorphisms in the category of algebraic varieties. Because regular and biregular are very restrictive conditions – there are no non-constant regular functions on projective varieties – the weaker condition of a rational map and birational maps are frequently used as well.

This is a glossary of algebraic geometry.

References

  1. Gabriel Daniel & Villa Salvador (2007). Topics in the Theory of Algebraic Function Fields. Springer. ISBN   9780817645151.