In theoretical physics, the Rarita–Schwinger equation is the relativistic field equation of spin-3/2 fermions in a four-dimensional flat spacetime. It is similar to the Dirac equation for spin-1/2 fermions. This equation was first introduced by William Rarita and Julian Schwinger in 1941.
In modern notation it can be written as: [1]
where is the Levi-Civita symbol, are Dirac matrices (with ) and , is the mass, , and is a vector-valued spinor with additional components compared to the four component spinor in the Dirac equation. It corresponds to the (1/2, 1/2) ⊗ ((1/2, 0) ⊕ (0, 1/2)) representation of the Lorentz group, or rather, its (1, 1/2) ⊕ (1/2, 1) part. [2]
This field equation can be derived as the Euler–Lagrange equation corresponding to the Rarita–Schwinger Lagrangian: [3]
where the bar above denotes the Dirac adjoint.
This equation controls the propagation of the wave function of composite objects such as the delta baryons (
Δ
) or for the conjectural gravitino. So far, no elementary particle with spin 3/2 has been found experimentally.
The massless Rarita–Schwinger equation has a fermionic gauge symmetry: is invariant under the gauge transformation , where is an arbitrary spinor field. This is simply the local supersymmetry of supergravity, and the field must be a gravitino.
"Weyl" and "Majorana" versions of the Rarita–Schwinger equation also exist.
Consider a massless Rarita–Schwinger field described by the Lagrangian density
where the sum over spin indices is implicit, are Majorana spinors, and
To obtain the equations of motion we vary the Lagrangian with respect to the fields , obtaining:
using the Majorana flip properties [4] we see that the second and first terms on the RHS are equal, concluding that
plus unimportant boundary terms. Imposing we thus see that the equation of motion for a massless Majorana Rarita–Schwinger spinor reads:
The gauge symmetry of the massless Rarita-Schwinger equation allows the choice of the gauge , reducing the equations to:
A solution with spins 1/2 and 3/2 is given by: [5]
where is the spatial Laplacian, is doubly transverse, [6] carrying spin 3/2, and satisfies the massless Dirac equation, therefore carrying spin 1/2.
The current description of massive, higher spin fields through either Rarita–Schwinger or Fierz–Pauli formalisms is afflicted with several maladies.
As in the case of the Dirac equation, electromagnetic interaction can be added by promoting the partial derivative to gauge covariant derivative:
In 1969, Velo and Zwanziger showed that the Rarita–Schwinger Lagrangian coupled to electromagnetism leads to equation with solutions representing wavefronts, some of which propagate faster than light. In other words, the field then suffers from acausal, superluminal propagation; consequently, the quantization in interaction with electromagnetism is essentially flawed[ why? ]. In extended supergravity, though, Das and Freedman [7] have shown that local supersymmetry solves this problem[ how? ].
In particle physics, the Dirac equation is a relativistic wave equation derived by British physicist Paul Dirac in 1928. In its free form, or including electromagnetic interactions, it describes all spin-1/2 massive particles, called "Dirac particles", such as electrons and quarks for which parity is a symmetry. It is consistent with both the principles of quantum mechanics and the theory of special relativity, and was the first theory to account fully for special relativity in the context of quantum mechanics. It was validated by accounting for the fine structure of the hydrogen spectrum in a completely rigorous way. It has become vital in the building of the Standard Model.
In the general theory of relativity, the Einstein field equations relate the geometry of spacetime to the distribution of matter within it.
The Einstein–Hilbert action in general relativity is the action that yields the Einstein field equations through the stationary-action principle. With the (− + + +) metric signature, the gravitational part of the action is given as
In mathematical physics, the gamma matrices, also called the Dirac matrices, are a set of conventional matrices with specific anticommutation relations that ensure they generate a matrix representation of the Clifford algebra It is also possible to define higher-dimensional gamma matrices. When interpreted as the matrices of the action of a set of orthogonal basis vectors for contravariant vectors in Minkowski space, the column vectors on which the matrices act become a space of spinors, on which the Clifford algebra of spacetime acts. This in turn makes it possible to represent infinitesimal spatial rotations and Lorentz boosts. Spinors facilitate spacetime computations in general, and in particular are fundamental to the Dirac equation for relativistic spin particles. Gamma matrices were introduced by Paul Dirac in 1928.
In differential geometry and mathematical physics, a spin connection is a connection on a spinor bundle. It is induced, in a canonical manner, from the affine connection. It can also be regarded as the gauge field generated by local Lorentz transformations. In some canonical formulations of general relativity, a spin connection is defined on spatial slices and can also be regarded as the gauge field generated by local rotations.
In theoretical physics, a source is an abstract concept, developed by Julian Schwinger, motivated by the physical effects of surrounding particles involved in creating or destroying another particle. So, one can perceive sources as the origin of the physical properties carried by the created or destroyed particle, and thus one can use this concept to study all quantum processes including the spacetime localized properties and the energy forms, i.e., mass and momentum, of the phenomena. The probability amplitude of the created or the decaying particle is defined by the effect of the source on a localized spacetime region such that the affected particle captures its physics depending on the tensorial and spinorial nature of the source. An example that Julian Schwinger referred to is the creation of meson due to the mass correlations among five mesons.
The Newman–Penrose (NP) formalism is a set of notation developed by Ezra T. Newman and Roger Penrose for general relativity (GR). Their notation is an effort to treat general relativity in terms of spinor notation, which introduces complex forms of the usual variables used in GR. The NP formalism is itself a special case of the tetrad formalism, where the tensors of the theory are projected onto a complete vector basis at each point in spacetime. Usually this vector basis is chosen to reflect some symmetry of the spacetime, leading to simplified expressions for physical observables. In the case of the NP formalism, the vector basis chosen is a null tetrad: a set of four null vectors—two real, and a complex-conjugate pair. The two real members often asymptotically point radially inward and radially outward, and the formalism is well adapted to treatment of the propagation of radiation in curved spacetime. The Weyl scalars, derived from the Weyl tensor, are often used. In particular, it can be shown that one of these scalars— in the appropriate frame—encodes the outgoing gravitational radiation of an asymptotically flat system.
In the Newman–Penrose (NP) formalism of general relativity, Weyl scalars refer to a set of five complex scalars which encode the ten independent components of the Weyl tensor of a four-dimensional spacetime.
In mathematical physics, the Dirac algebra is the Clifford algebra . This was introduced by the mathematical physicist P. A. M. Dirac in 1928 in developing the Dirac equation for spin-1/2 particles with a matrix representation of the gamma matrices, which represent the generators of the algebra.
Newton–Cartan theory is a geometrical re-formulation, as well as a generalization, of Newtonian gravity first introduced by Élie Cartan and Kurt Friedrichs and later developed by G. Dautcourt, W. G. Dixon, P. Havas, H. Künzle, Andrzej Trautman, and others. In this re-formulation, the structural similarities between Newton's theory and Albert Einstein's general theory of relativity are readily seen, and it has been used by Cartan and Friedrichs to give a rigorous formulation of the way in which Newtonian gravity can be seen as a specific limit of general relativity, and by Jürgen Ehlers to extend this correspondence to specific solutions of general relativity.
In mathematical physics, the Belinfante–Rosenfeld tensor is a modification of the stress–energy tensor that is constructed from the canonical stress–energy tensor and the spin current so as to be symmetric yet still conserved.
In quantum field theory, the nonlinear Dirac equation is a model of self-interacting Dirac fermions. This model is widely considered in quantum physics as a toy model of self-interacting electrons.
In mathematical physics, the Dirac equation in curved spacetime is a generalization of the Dirac equation from flat spacetime to curved spacetime, a general Lorentzian manifold.
In mathematical physics, the Gordon decomposition of the Dirac current is a splitting of the charge or particle-number current into a part that arises from the motion of the center of mass of the particles and a part that arises from gradients of the spin density. It makes explicit use of the Dirac equation and so it applies only to "on-shell" solutions of the Dirac equation.
In relativistic quantum mechanics and quantum field theory, the Joos–Weinberg equation is a relativistic wave equation applicable to free particles of arbitrary spin j, an integer for bosons or half-integer for fermions. The solutions to the equations are wavefunctions, mathematically in the form of multi-component spinor fields. The spin quantum number is usually denoted by s in quantum mechanics, however in this context j is more typical in the literature.
In supersymmetry, pure 4D supergravity describes the simplest four-dimensional supergravity, with a single supercharge and a supermultiplet containing a graviton and gravitino. The action consists of the Einstein–Hilbert action and the Rarita–Schwinger action. The theory was first formulated by Daniel Z. Freedman, Peter van Nieuwenhuizen, and Sergio Ferrara, and independently by Stanley Deser and Bruno Zumino in 1976. The only consistent extension to spacetimes with a cosmological constant is to anti-de Sitter space, first formulated by Paul Townsend in 1977. When additional matter supermultiplets are included in this theory, the result is known as matter-coupled 4D supergravity.
In supersymmetry, eleven-dimensional supergravity is the theory of supergravity in the highest number of dimensions allowed for a supersymmetric theory. It contains a graviton, a gravitino, and a 3-form gauge field, with their interactions uniquely fixed by supersymmetry. Discovered in 1978 by Eugène Cremmer, Bernard Julia, and Joël Scherk, it quickly became a popular candidate for a theory of everything during the 1980s. However, interest in it soon faded due to numerous difficulties that arise when trying to construct physically realistic models. It came back to prominence in the mid-1990s when it was found to be the low energy limit of M-theory, making it crucial for understanding various aspects of string theory.
In supersymmetry, type IIA supergravity is the unique supergravity in ten dimensions with two supercharges of opposite chirality. It was first constructed in 1984 by a dimensional reduction of eleven-dimensional supergravity on a circle. The other supergravities in ten dimensions are type IIB supergravity, which has two supercharges of the same chirality, and type I supergravity, which has a single supercharge. In 1986 a deformation of the theory was discovered which gives mass to one of the fields and is known as massive type IIA supergravity. Type IIA supergravity plays a very important role in string theory as it is the low-energy limit of type IIA string theory.
In supersymmetry, type IIB supergravity is the unique supergravity in ten dimensions with two supercharges of the same chirality. It was first constructed in 1983 by John Schwarz and independently by Paul Howe and Peter West at the level of its equations of motion. While it does not admit a fully covariant action due to the presence of a self-dual field, it can be described by an action if the self-duality condition is imposed by hand on the resulting equations of motion. The other types of supergravity in ten dimensions are type IIA supergravity, which has two supercharges of opposing chirality, and type I supergravity, which has a single supercharge. The theory plays an important role in modern physics since it is the low-energy limit of type IIB string theory.
In supersymmetry, type I supergravity is the theory of supergravity in ten dimensions with a single supercharge. It consists of a single supergravity multiplet and a single Yang–Mills multiplet. The full non-abelian action was first derived in 1983 by George Chapline and Nicholas Manton. Classically the theory can admit any gauge group, but a consistent quantum theory resulting in anomaly cancellation only exists if the gauge group is either or . Both these supergravities are realised as the low-energy limits of string theories, in particular of type I string theory and of the two heterotic string theories.