Electron localization function

Last updated
Electron localization function of the krypton atom at the Hartree-Fock / cc-pV5Z level of theory. Also shown is the radial density, 4prr(r), scaled by a factor of 0.0375. Electron localization function of Kr (HF cc-pV5Z).png
Electron localization function of the krypton atom at the Hartree–Fock  / cc-pV5Z level of theory. Also shown is the radial density, 4πrρ(r), scaled by a factor of 0.0375.

In quantum chemistry, the electron localization function (ELF) is a measure of the likelihood of finding an electron in the neighborhood space of a reference electron located at a given point and with the same spin. Physically, this measures the extent of spatial localization of the reference electron and provides a method for the mapping of electron pair probability in multielectronic systems.

ELF's usefulness stems from the observation that it allows electron localization to be analyzed in a chemically intuitive way. For example, the shell structure of heavy atoms is obvious when plotting ELF against the radial distance from the nucleus; the ELF for radon has six clear maxima, whereas the electronic density decreases monotonically and the radially weighted density fails to show all shells. When applied to molecules, an analysis of the ELF shows a clear separation between the core and valence electron, and also shows covalent bonds and lone pairs, in what has been called "a faithful visualization of VSEPR theory in action". [1] Another feature of the ELF is that it is invariant concerning the transformation of the molecular orbitals.

Image of the ELF of water at level 0.8, generated using PyMOL Elf h2o.png
Image of the ELF of water at level 0.8, generated using PyMOL

The ELF was originally defined by Becke and Edgecombe in 1990. [1] They first argued that a measure of the electron localization is provided by

where ρ is the electron spin density and τ the kinetic energy density. The second term (negative term) is the bosonic kinetic energy density, so D is the contribution due to fermions. D is expected to be small in those regions of space where localized electrons are to be found. Given the arbitrariness of the magnitude of the localization measure provided by D, it is compared to the corresponding value for a uniform electron gas with spin density equal to ρ(r), which is given by

The ratio,

is a dimensionless localization index that expresses electron localization for the uniform electron gas. In the final step, the ELF is defined in terms of χ by mapping its values on to the range 0 ≤ ELF ≤ 1 by defining the electron localization function as

ELF = 1 corresponding to perfect localization and ELF = 1/2 corresponding to the electron gas.

The original derivation was based on Hartree–Fock theory. For density functional theory, the approach was generalized by Andreas Savin in 1992, [2] who also have applied the formulation to examining various chemical and materials systems. [3] In 1994, Bernard Silvi and Andreas Savin developed a method for explaining ELFs using differential topology. [4]

The approach of electron localization, in the form of atoms in molecules (AIM), was pioneered by Richard Bader. [5] Bader's analysis partitions the charge density in a molecule to "atoms" according to zero-flux surfaces (surfaces across which no electron flow is taking place). [6] Bader's analysis allows many properties such as multipole moments, energies and forces, to be partitioned in a defensible and consistent manner to individual atoms within molecules.

Both the Bader approach and the ELF approach to partitioning of molecular properties have gained popularity in recent years because the fastest, accurate ab-initio calculations of molecular properties are now mostly made using density functional theory (DFT), which directly calculates the electron density. This electron density is then analyzed using the Bader charge analysis of Electron Localization Functions. One of the most popular functionals in DFT was first proposed by Becke, who also originated Electron Localization Functions.

Related Research Articles

Continuum mechanics is a branch of mechanics that deals with the deformation of and transmission of forces through materials modeled as a continuous medium rather than as discrete particles. The French mathematician Augustin-Louis Cauchy was the first to formulate such models in the 19th century.

In particle physics, the Dirac equation is a relativistic wave equation derived by British physicist Paul Dirac in 1928. In its free form, or including electromagnetic interactions, it describes all spin-1/2 massive particles, called "Dirac particles", such as electrons and quarks for which parity is a symmetry. It is consistent with both the principles of quantum mechanics and the theory of special relativity, and was the first theory to account fully for special relativity in the context of quantum mechanics. It was validated by accounting for the fine structure of the hydrogen spectrum in a completely rigorous way.

<span class="mw-page-title-main">Multivariate normal distribution</span> Generalization of the one-dimensional normal distribution to higher dimensions

In probability theory and statistics, the multivariate normal distribution, multivariate Gaussian distribution, or joint normal distribution is a generalization of the one-dimensional (univariate) normal distribution to higher dimensions. One definition is that a random vector is said to be k-variate normally distributed if every linear combination of its k components has a univariate normal distribution. Its importance derives mainly from the multivariate central limit theorem. The multivariate normal distribution is often used to describe, at least approximately, any set of (possibly) correlated real-valued random variables, each of which clusters around a mean value.

Electrical resistivity is a fundamental specific property of a material that measures its electrical resistance or how strongly it resists electric current. A low resistivity indicates a material that readily allows electric current. Resistivity is commonly represented by the Greek letter ρ (rho). The SI unit of electrical resistivity is the ohm-metre (Ω⋅m). For example, if a 1 m3 solid cube of material has sheet contacts on two opposite faces, and the resistance between these contacts is 1 Ω, then the resistivity of the material is 1 Ω⋅m.

In physics, mean free path is the average distance over which a moving particle travels before substantially changing its direction or energy, typically as a result of one or more successive collisions with other particles.

Electron density or electronic density is the measure of the probability of an electron being present at an infinitesimal element of space surrounding any given point. It is a scalar quantity depending upon three spatial variables and is typically denoted as either or . The density is determined, through definition, by the normalised -electron wavefunction which itself depends upon variables. Conversely, the density determines the wave function modulo up to a phase factor, providing the formal foundation of density functional theory.

In statistics, the Wishart distribution is a generalization of the gamma distribution to multiple dimensions. It is named in honor of John Wishart, who first formulated the distribution in 1928. Other names include Wishart ensemble, or Wishart–Laguerre ensemble, or LOE, LUE, LSE.

<span class="mw-page-title-main">Polarization density</span> Vector field describing the density of electric dipole moments in a dielectric material

In classical electromagnetism, polarization density is the vector field that expresses the volumetric density of permanent or induced electric dipole moments in a dielectric material. When a dielectric is placed in an external electric field, its molecules gain electric dipole moment and the dielectric is said to be polarized.

<span class="mw-page-title-main">Electric displacement field</span> Vector field related to displacement current and flux density

In physics, the electric displacement field or electric induction is a vector field that appears in Maxwell's equations. It accounts for the electromagnetic effects of polarization and that of an electric field, combining the two in an auxiliary field. It plays a major role in topics such as the capacitance of a material, as well the response of dielectrics to electric field, and how shapes can change due to electric fields in piezoelectricity or flexoelectricity as well as the creation of voltages and charge transfer due to elastic strains.

Polarizability usually refers to the tendency of matter, when subjected to an electric field, to acquire an electric dipole moment in proportion to that applied field. It is a property of particles with an electric charge. When subject to an electric field, the negatively charged electrons and positively charged atomic nuclei are subject to opposite forces and undergo charge separation. Polarizability is responsible for a material's dielectric constant and, at high (optical) frequencies, its refractive index.

<span class="mw-page-title-main">Charge density</span> Electric charge per unit length, area or volume

In electromagnetism, charge density is the amount of electric charge per unit length, surface area, or volume. Volume charge density is the quantity of charge per unit volume, measured in the SI system in coulombs per cubic meter (C⋅m−3), at any point in a volume. Surface charge density (σ) is the quantity of charge per unit area, measured in coulombs per square meter (C⋅m−2), at any point on a surface charge distribution on a two dimensional surface. Linear charge density (λ) is the quantity of charge per unit length, measured in coulombs per meter (C⋅m−1), at any point on a line charge distribution. Charge density can be either positive or negative, since electric charge can be either positive or negative.

Local-density approximations (LDA) are a class of approximations to the exchange–correlation (XC) energy functional in density functional theory (DFT) that depend solely upon the value of the electronic density at each point in space. Many approaches can yield local approximations to the XC energy. However, overwhelmingly successful local approximations are those that have been derived from the homogeneous electron gas (HEG) model. In this regard, LDA is generally synonymous with functionals based on the HEG approximation, which are then applied to realistic systems.

Zero differential overlap is an approximation in computational molecular orbital theory that is the central technique of semi-empirical methods in quantum chemistry. When computers were first used to calculate bonding in molecules, it was only possible to calculate diatomic molecules. As computers advanced, it became possible to study larger molecules, but the use of this approximation has always allowed the study of even larger molecules. Currently semi-empirical methods can be applied to molecules as large as whole proteins. The approximation involves ignoring certain integrals, usually two-electron repulsion integrals. If the number of orbitals used in the calculation is N, the number of two-electron repulsion integrals scales as N4. After the approximation is applied the number of such integrals scales as N2, a much smaller number, simplifying the calculation.

The Kohn-Sham equations are a set of mathematical equations used in quantum mechanics to simplify the complex problem of understanding how electrons behave in atoms and molecules. They introduce fictitious non-interacting electrons and use them to find the most stable arrangement of electrons, which helps scientists understand and predict the properties of matter at the atomic and molecular scale.

Bayesian linear regression is a type of conditional modeling in which the mean of one variable is described by a linear combination of other variables, with the goal of obtaining the posterior probability of the regression coefficients and ultimately allowing the out-of-sample prediction of the regressandconditional on observed values of the regressors. The simplest and most widely used version of this model is the normal linear model, in which given is distributed Gaussian. In this model, and under a particular choice of prior probabilities for the parameters—so-called conjugate priors—the posterior can be found analytically. With more arbitrarily chosen priors, the posteriors generally have to be approximated.

In mathematics – specifically, in stochastic analysis – an Itô diffusion is a solution to a specific type of stochastic differential equation. That equation is similar to the Langevin equation used in physics to describe the Brownian motion of a particle subjected to a potential in a viscous fluid. Itô diffusions are named after the Japanese mathematician Kiyosi Itô.

The Cauchy momentum equation is a vector partial differential equation put forth by Cauchy that describes the non-relativistic momentum transport in any continuum.

In quantum mechanics, and especially quantum information theory, the purity of a normalized quantum state is a scalar defined as

An electric dipole transition is the dominant effect of an interaction of an electron in an atom with the electromagnetic field.

Lagrangian field theory is a formalism in classical field theory. It is the field-theoretic analogue of Lagrangian mechanics. Lagrangian mechanics is used to analyze the motion of a system of discrete particles each with a finite number of degrees of freedom. Lagrangian field theory applies to continua and fields, which have an infinite number of degrees of freedom.

References

  1. 1 2 A. D. Becke and K. E. Edgecombe (1990). "A simple measure of electron localization in atomic and molecular systems". J. Chem. Phys. 92 (9): 5397–5403. Bibcode:1990JChPh..92.5397B. doi:10.1063/1.458517.
  2. Savin, A.; Jepsen, O.; Flad, J.; Andersen, O. K.; Preuss, H.; von Schnering, H. G. (1992). "Electron localization in solid-state structures of the elements  the diamond structure". Angewandte Chemie International Edition in English. 31 (2): 187–188. doi:10.1002/anie.199201871.
  3. Savin, Andreas; Nesper, Reinhard; Wengert, Steffen; Fässler, Thomas F. (1997-09-17). "ELF: The Electron Localization Function". Angewandte Chemie International Edition in English. 36 (17): 1808–1832. doi:10.1002/anie.199718081. ISSN   0570-0833.
  4. Silvi, B.; Savin, A. (1994). "Classification of chemical bonds based on topological analysis of electron localization functions". Nature. 371 (6499): 683–686. Bibcode:1994Natur.371..683S. doi:10.1038/371683a0. ISSN   0028-0836. S2CID   4362878.
  5. Bader, R. W. F. (1994). Atoms in Molecules: A Quantum Theory. Oxford University Press. ISBN   978-0-19-855865-1.
  6. Bader, Richard F. W. (2001-04-04). "The zero-flux surface and the topological and quantum definitions of an atom in a molecule". Theoretical Chemistry Accounts: Theory, Computation, and Modeling. 105 (4–5): 276–283. doi:10.1007/s002140000233. ISSN   1432-881X. S2CID   120944734.