In quantum information science, a classical information channel (often called simply classical channel) is a communication channel that can be used to transmit classical information (as opposed to quantum channel which can transmit quantum information). An example would be a light travelling over fiber optics lines or electricity travelling over phone lines.
Although classical channels cannot transmit quantum information by themselves, they can be useful in combination with quantum channels. Examples of their use are:
Information theory is the scientific study of the quantification, storage, and communication of information. The field was fundamentally established by the works of Harry Nyquist and Ralph Hartley, in the 1920s, and Claude Shannon in the 1940s. The field is at the intersection of probability theory, statistics, computer science, statistical mechanics, information engineering, and electrical engineering.
In physics, the no-cloning theorem states that it is impossible to create an independent and identical copy of an arbitrary unknown quantum state, a statement which has profound implications in the field of quantum computing among others. The theorem is an evolution of the 1970 no-go theorem authored by James Park, in which he demonstrates that a non-disturbing measurement scheme which is both simple and perfect cannot exist. The aforementioned theorems do not preclude the state of one system becoming entangled with the state of another as cloning specifically refers to the creation of a separable state with identical factors. For example, one might use the controlled NOT gate and the Walsh–Hadamard gate to entangle two qubits without violating the no-cloning theorem as no well-defined state may be defined in terms of a subsystem of an entangled state. The no-cloning theorem concerns only pure states whereas the generalized statement regarding mixed states is known as the no-broadcast theorem.
Quantum information is the information of the state of a quantum system. It is the basic entity of study in quantum information theory, and can be manipulated using quantum information processing techniques. Quantum information refers to both the technical definition in terms of Von Neumann entropy and the general computational term.
Quantum teleportation is a technique for transferring quantum information from a sender at one location to a receiver some distance away. While teleportation is commonly portrayed in science fiction as a means to transfer physical objects from one location to the next, quantum teleportation only transfers quantum information. Moreover, the sender may not know the location of the recipient, and does not know which particular quantum state will be transferred.
Quantum key distribution (QKD) is a secure communication method which implements a cryptographic protocol involving components of quantum mechanics. It enables two parties to produce a shared random secret key known only to them, which can then be used to encrypt and decrypt messages. It is often incorrectly called quantum cryptography, as it is the best-known example of a quantum cryptographic task.
Information-theoretic security is security of a cryptosystem which derives purely from information theory; the system cannot be broken even if the adversary has unlimited computing power. The cryptosystem is considered cryptoanalytically unbreakable if the adversary does not have enough information to break the encryption.
The Bell states, a concept in quantum information science, are specific quantum states of two qubits that represent the simplest examples of quantum entanglement. The Bell states are a form of entangled and normalized basis vectors. This normalization implies that the overall probability of the particle being in one of the mentioned states is 1: . Entanglement is a basis-independent result of superposition. Due to this superposition, measurement of the qubit will collapse it into one of its basis states with a given probability. Because of the entanglement, measurement of one qubit will assign one of two possible values to the other qubit instantly, where the value assigned depends on which Bell state the two qubits are in. Bell states can be generalized to represent specific quantum states of multi-qubit systems, such as the GHZ state for 3 or more subsystems.
In quantum information theory, a quantum channel is a communication channel which can transmit quantum information, as well as classical information. An example of quantum information is the state of a qubit. An example of classical information is a text document transmitted over the Internet.
In physics, the no-communication theorem or no-signaling principle is a no-go theorem from quantum information theory which states that, during measurement of an entangled quantum state, it is not possible for one observer, by making a measurement of a subsystem of the total state, to communicate information to another observer. The theorem is important because, in quantum mechanics, quantum entanglement is an effect by which certain widely separated events can be correlated in ways that suggest the possibility of communication faster-than-light. The no-communication theorem gives conditions under which such transfer of information between two observers is impossible. These results can be applied to understand the so-called paradoxes in quantum mechanics, such as the EPR paradox, or violations of local realism obtained in tests of Bell's theorem. In these experiments, the no-communication theorem shows that failure of local realism does not lead to what could be referred to as "spooky communication at a distance".
Quantum networks form an important element of quantum computing and quantum communication systems. Quantum networks facilitate the transmission of information in the form of quantum bits, also called qubits, between physically separated quantum processors. A quantum processor is a small quantum computer being able to perform quantum logic gates on a certain number of qubits. Quantum networks work in a similar way to classical networks. The main difference is that quantum networking, like quantum computing, is better at solving certain problems, such as modeling quantum systems.
In quantum information theory, superdense coding is a quantum communication protocol to transmit two classical bits of information from a sender to a receiver, by sending only one qubit from Alice to Bob, under the assumption of Alice and Bob pre-sharing an entangled state. This protocol was first proposed by Bennett and Wiesner in 1992 and experimentally actualized in 1996 by Mattle, Weinfurter, Kwiat and Zeilinger using entangled photon pairs. By performing one of four quantum gate operations on the (entangled) qubit she possesses, Alice can prearrange the measurement Bob makes. After receiving Alice's qubit, operating on the pair and measuring both, Bob has two classical bits of information. If Alice and Bob do not already share entanglement before the protocol begins, then it is impossible to send two classical bits using 1 qubit, as this would violate Holevo's theorem.
LOCC, or local operations and classical communication, is a method in quantum information theory where a local (product) operation is performed on part of the system, and where the result of that operation is "communicated" classically to another part where usually another local operation is performed conditioned on the information received.
In computing, telecommunication, information theory, and coding theory, an error correction code, sometimes error correcting code, (ECC) is used for controlling errors in data over unreliable or noisy communication channels. The central idea is the sender encodes the message with redundant information in the form of an ECC. The redundancy allows the receiver to detect a limited number of errors that may occur anywhere in the message, and often to correct these errors without retransmission. The American mathematician Richard Hamming pioneered this field in the 1940s and invented the first error-correcting code in 1950: the Hamming (7,4) code.
In quantum information theory, the no-teleportation theorem states that an arbitrary quantum state cannot be converted into a sequence of classical bits ; nor can such bits be used to reconstruct the original state, thus "teleporting" it by merely moving classical bits around. Put another way, it states that the unit of quantum information, the qubit, cannot be exactly, precisely converted into classical information bits. This should not be confused with quantum teleportation, which does allow a quantum state to be destroyed in one location, and an exact replica to be created at a different location.
Teleportation is the hypothetical transfer of matter or energy from one point to another without traversing the physical space between them. It is a common subject in science fiction literature, film, video games, and television. Teleportation is often paired with time travel, being that the travelling between the two points takes an unknown period of time, sometimes being immediate.
Entanglement distillation is the transformation of N copies of an arbitrary entangled state into some number of approximately pure Bell pairs, using only local operations and classical communication (LOCC).
Quantum cryptography is the science of exploiting quantum mechanical properties to perform cryptographic tasks. The best known example of quantum cryptography is quantum key distribution which offers an information-theoretically secure solution to the key exchange problem. The advantage of quantum cryptography lies in the fact that it allows the completion of various cryptographic tasks that are proven or conjectured to be impossible using only classical communication. For example, it is impossible to copy data encoded in a quantum state. If one attempts to read the encoded data, the quantum state will be changed due to wave function collapse. This could be used to detect eavesdropping in quantum key distribution.
In the theory of quantum communication, the entanglement-assisted classical capacity of a quantum channel is the highest rate at which classical information can be transmitted from a sender to receiver when they share an unlimited amount of noiseless entanglement. It is given by the quantum mutual information of the channel, which is the input-output quantum mutual information maximized over all pure bipartite quantum states with one system transmitted through the channel. This formula is the natural generalization of Shannon's noisy channel coding theorem, in the sense that this formula is equal to the capacity, and there is no need to regularize it. An additional feature that it shares with Shannon's formula is that a noiseless classical or quantum feedback channel cannot increase the entanglement-assisted classical capacity. The entanglement-assisted classical capacity theorem is proved in two parts: the direct coding theorem and the converse theorem. The direct coding theorem demonstrates that the quantum mutual information of the channel is an achievable rate, by a random coding strategy that is effectively a noisy version of the super-dense coding protocol. The converse theorem demonstrates that this rate is optimal by making use of the strong subadditivity of quantum entropy.
The noisy-storage model refers to a cryptographic model employed in quantum cryptography. It assumes that the quantum memory device of an attacker (adversary) trying to break the protocol is imperfect (noisy). The main goal of this model is to enable the secure implementation of two-party cryptographic primitives, such as bit commitment, oblivious transfer and secure identification.
Linear Optical Quantum Computing or Linear Optics Quantum Computation (LOQC) is a paradigm of quantum computation, allowing universal quantum computation. LOQC uses photons as information carriers, mainly uses linear optical elements, or optical instruments to process quantum information, and uses photon detectors and quantum memories to detect and store quantum information.