The continuous spontaneous localization (CSL) model is a spontaneous collapse model in quantum mechanics, proposed in 1989 by Philip Pearle. [1] and finalized in 1990 Gian Carlo Ghirardi, Philip Pearle and Alberto Rimini. [2]
The most widely studied among the dynamical reduction (also known as collapse) models is the CSL model. [1] [2] [3] Building on the Ghirardi-Rimini-Weber model, [4] the CSL model describes the collapse of the wave function as occurring continuously in time, in contrast to the Ghirardi-Rimini-Weber model.
Some of the key features of the model are: [3]
The CSL dynamical equation for the wave function is stochastic and non-linear:Here is the Hamiltonian describing the quantum mechanical dynamics, is a reference mass taken equal to that of a nucleon, , and the noise field has zero average and correlation equal towhere denotes the stochastic average over the noise. Finally, we writewhere is the mass density operator, which readswhere and are, respectively, the second quantized creation and annihilation operators of a particle of type with spin at the point of mass . The use of these operators satisfies the conservation of the symmetry properties of identical particles. Moreover, the mass proportionality implements automatically the amplification mechanism. The choice of the form of ensures the collapse in the position basis.
The action of the CSL model is quantified by the values of the two phenomenological parameters and . Originally, the Ghirardi-Rimini-Weber model [4] proposed s at m, while later Adler considered larger values: [5] s for m, and s for m. Eventually, these values have to be bounded by experiments.
From the dynamics of the wave function one can obtain the corresponding master equation for the statistical operator :Once the master equation is represented in the position basis, it becomes clear that its direct action is to diagonalize the density matrix in position. For a single point-like particle of mass , it readswhere the off-diagonal terms, which have , decay exponentially. Conversely, the diagonal terms, characterized by , are preserved. For a composite system, the single-particle collapse rate should be replaced with that of the composite systemwhere is the Fourier transform of the mass density of the system.
Contrary to most other proposed solutions of the measurement problem, collapse models are experimentally testable. Experiments testing the CSL model can be divided in two classes: interferometric and non-interferometric experiments, which respectively probe direct and indirect effects of the collapse mechanism.
Interferometric experiments can detect the direct action of the collapse, which is to localize the wavefunction in space. They include all experiments where a superposition is generated and, after some time, its interference pattern is probed. The action of CSL is a reduction of the interference contrast, which is quantified by the reduction of the off-diagonal terms of the statistical operator [6] where denotes the statistical operator described by quantum mechanics, and we defineExperiments testing such a reduction of the interference contrast are carried out with cold-atoms, [7] molecules [6] [8] [9] [10] and entangled diamonds. [11] [12]
Similarly, one can also quantify the minimum collapse strength to solve the measurement problem at the macroscopic level. Specifically, an estimate [6] can be obtained by requiring that a superposition of a single-layered graphene disk of radius m collapses in less than s.
Non-interferometric experiments consist in CSL tests, which are not based on the preparation of a superposition. They exploit an indirect effect of the collapse, which consists in a Brownian motion induced by the interaction with the collapse noise. The effect of this noise amounts to an effective stochastic force acting on the system, and several experiments can be designed to quantify such a force. They include: [13]
where is the vacuum dielectric constant and is the light speed. This prediction of CSL can be tested [18] [19] [20] [21] by analyzing the X-ray emission spectrum from a bulk Germanium test mass.
The CSL model consistently describes the collapse mechanism as a dynamical process. It has, however, two weak points.
The uncertainty principle, also known as Heisenberg's indeterminacy principle, is a fundamental concept in quantum mechanics. It states that there is a limit to the precision with which certain pairs of physical properties, such as position and momentum, can be simultaneously known. In other words, the more accurately one property is measured, the less accurately the other property can be known.
Loop quantum gravity (LQG) is a theory of quantum gravity that incorporates matter of the Standard Model into the framework established for the intrinsic quantum gravity case. It is an attempt to develop a quantum theory of gravity based directly on Albert Einstein's geometric formulation rather than the treatment of gravity as a mysterious mechanism (force). As a theory, LQG postulates that the structure of space and time is composed of finite loops woven into an extremely fine fabric or network. These networks of loops are called spin networks. The evolution of a spin network, or spin foam, has a scale on the order of a Planck length, approximately 10−35 meters, and smaller scales are meaningless. Consequently, not just matter, but space itself, prefers an atomic structure.
In solid state physics, a particle's effective mass is the mass that it seems to have when responding to forces, or the mass that it seems to have when interacting with other identical particles in a thermal distribution. One of the results from the band theory of solids is that the movement of particles in a periodic potential, over long distances larger than the lattice spacing, can be very different from their motion in a vacuum. The effective mass is a quantity that is used to simplify band structures by modeling the behavior of a free particle with that mass. For some purposes and some materials, the effective mass can be considered to be a simple constant of a material. In general, however, the value of effective mass depends on the purpose for which it is used, and can vary depending on a number of factors.
A hypernucleus is similar to a conventional atomic nucleus, but contains at least one hyperon in addition to the normal protons and neutrons. Hyperons are a category of baryon particles that carry non-zero strangeness quantum number, which is conserved by the strong and electromagnetic interactions.
The Wheeler–DeWitt equation for theoretical physics and applied mathematics, is a field equation attributed to John Archibald Wheeler and Bryce DeWitt. The equation attempts to mathematically combine the ideas of quantum mechanics and general relativity, a step towards a theory of quantum gravity.
The Schrödinger–Newton equation, sometimes referred to as the Newton–Schrödinger or Schrödinger–Poisson equation, is a nonlinear modification of the Schrödinger equation with a Newtonian gravitational potential, where the gravitational potential emerges from the treatment of the wave function as a mass density, including a term that represents interaction of a particle with its own gravitational field. The inclusion of a self-interaction term represents a fundamental alteration of quantum mechanics. It can be written either as a single integro-differential equation or as a coupled system of a Schrödinger and a Poisson equation. In the latter case it is also referred to in the plural form.
In the study of graphs and networks, the degree of a node in a network is the number of connections it has to other nodes and the degree distribution is the probability distribution of these degrees over the whole network.
In theoretical physics, massive gravity is a theory of gravity that modifies general relativity by endowing the graviton with a nonzero mass. In the classical theory, this means that gravitational waves obey a massive wave equation and hence travel at speeds below the speed of light.
In theoretical physics, quantum nonlocality refers to the phenomenon by which the measurement statistics of a multipartite quantum system do not allow an interpretation with local realism. Quantum nonlocality has been experimentally verified under a variety of physical assumptions.
Objective-collapse theories, also known spontaneous collapse models or dynamical reduction models, are proposed solutions to the measurement problem in quantum mechanics. As with other interpretations of quantum mechanics, they are possible explanations of why and how quantum measurements always give definite outcomes, not a superposition of them as predicted by the Schrödinger equation, and more generally how the classical world emerges from quantum theory. The fundamental idea is that the unitary evolution of the wave function describing the state of a quantum system is approximate. It works well for microscopic systems, but progressively loses its validity when the mass / complexity of the system increases.
The percolation threshold is a mathematical concept in percolation theory that describes the formation of long-range connectivity in random systems. Below the threshold a giant connected component does not exist; while above it, there exists a giant component of the order of system size. In engineering and coffee making, percolation represents the flow of fluids through porous media, but in the mathematics and physics worlds it generally refers to simplified lattice models of random systems or networks (graphs), and the nature of the connectivity in them. The percolation threshold is the critical value of the occupation probability p, or more generally a critical surface for a group of parameters p1, p2, ..., such that infinite connectivity (percolation) first occurs.
The Ghirardi–Rimini–Weber theory (GRW) is a spontaneous collapse theory in quantum mechanics, proposed in 1986 by Giancarlo Ghirardi, Alberto Rimini, and Tullio Weber.
The light-front quantization of quantum field theories provides a useful alternative to ordinary equal-time quantization. In particular, it can lead to a relativistic description of bound systems in terms of quantum-mechanical wave functions. The quantization is based on the choice of light-front coordinates, where plays the role of time and the corresponding spatial coordinate is . Here, is the ordinary time, is one Cartesian coordinate, and is the speed of light. The other two Cartesian coordinates, and , are untouched and often called transverse or perpendicular, denoted by symbols of the type . The choice of the frame of reference where the time and -axis are defined can be left unspecified in an exactly soluble relativistic theory, but in practical calculations some choices may be more suitable than others.
The kicked rotator, also spelled as kicked rotor, is a paradigmatic model for both Hamiltonian chaos and quantum chaos. It describes a free rotating stick in an inhomogeneous "gravitation like" field that is periodically switched on in short pulses. The model is described by the Hamiltonian
The q-exponential distribution is a probability distribution arising from the maximization of the Tsallis entropy under appropriate constraints, including constraining the domain to be positive. It is one example of a Tsallis distribution. The q-exponential is a generalization of the exponential distribution in the same way that Tsallis entropy is a generalization of standard Boltzmann–Gibbs entropy or Shannon entropy. The exponential distribution is recovered as
The light-front quantization of quantum field theories provides a useful alternative to ordinary equal-time quantization. In particular, it can lead to a relativistic description of bound systems in terms of quantum-mechanical wave functions. The quantization is based on the choice of light-front coordinates, where plays the role of time and the corresponding spatial coordinate is . Here, is the ordinary time, is one Cartesian coordinate, and is the speed of light. The other two Cartesian coordinates, and , are untouched and often called transverse or perpendicular, denoted by symbols of the type . The choice of the frame of reference where the time and -axis are defined can be left unspecified in an exactly soluble relativistic theory, but in practical calculations some choices may be more suitable than others.
In statistics, Whittle likelihood is an approximation to the likelihood function of a stationary Gaussian time series. It is named after the mathematician and statistician Peter Whittle, who introduced it in his PhD thesis in 1951. It is commonly used in time series analysis and signal processing for parameter estimation and signal detection.
In theoretical physics, the dual graviton is a hypothetical elementary particle that is a dual of the graviton under electric-magnetic duality, as an S-duality, predicted by some formulations of eleven-dimensional supergravity.
A fracton is an emergent topological quasiparticle excitation which is immobile when in isolation. Many theoretical systems have been proposed in which fractons exist as elementary excitations. Such systems are known as fracton models. Fractons have been identified in various CSS codes as well as in symmetric tensor gauge theories.
The Diósi–Penrose model was introduced as a possible solution to the measurement problem, where the wave function collapse is related to gravity. The model was first suggested by Lajos Diósi when studying how possible gravitational fluctuations may affect the dynamics of quantum systems. Later, following a different line of reasoning, Roger Penrose arrived at an estimation for the collapse time of a superposition due to gravitational effects, which is the same as that found by Diósi, hence the name Diósi–Penrose model. However, it should be pointed out that while Diósi gave a precise dynamical equation for the collapse, Penrose took a more conservative approach, estimating only the collapse time of a superposition.