Continuous spontaneous localization model

Last updated

The continuous spontaneous localization (CSL) model is a spontaneous collapse model in quantum mechanics, proposed in 1989 by Philip Pearle. [1] and finalized in 1990 Gian Carlo Ghirardi, Philip Pearle and Alberto Rimini. [2]

Contents

Introduction

The most widely studied among the dynamical reduction (also known as collapse) models is the CSL model. [1] [2] [3] Building on the Ghirardi-Rimini-Weber model, [4] the CSL model describes the collapse of the wave function as occurring continuously in time, in contrast to the Ghirardi-Rimini-Weber model.

Some of the key features of the model are: [3]

Dynamical equation

The CSL dynamical equation for the wave function is stochastic and non-linear:Here is the Hamiltonian describing the quantum mechanical dynamics, is a reference mass taken equal to that of a nucleon, , and the noise field has zero average and correlation equal towhere denotes the stochastic average over the noise. Finally, we writewhere is the mass density operator, which readswhere and are, respectively, the second quantized creation and annihilation operators of a particle of type with spin at the point of mass . The use of these operators satisfies the conservation of the symmetry properties of identical particles. Moreover, the mass proportionality implements automatically the amplification mechanism. The choice of the form of ensures the collapse in the position basis.

The action of the CSL model is quantified by the values of the two phenomenological parameters and . Originally, the Ghirardi-Rimini-Weber model [4] proposed s at m, while later Adler considered larger values: [5] s for m, and s for m. Eventually, these values have to be bounded by experiments.

From the dynamics of the wave function one can obtain the corresponding master equation for the statistical operator :Once the master equation is represented in the position basis, it becomes clear that its direct action is to diagonalize the density matrix in position. For a single point-like particle of mass , it readswhere the off-diagonal terms, which have , decay exponentially. Conversely, the diagonal terms, characterized by , are preserved. For a composite system, the single-particle collapse rate should be replaced with that of the composite systemwhere is the Fourier transform of the mass density of the system.

Experimental tests

Contrary to most other proposed solutions of the measurement problem, collapse models are experimentally testable. Experiments testing the CSL model can be divided in two classes: interferometric and non-interferometric experiments, which respectively probe direct and indirect effects of the collapse mechanism.

Interferometric experiments

Interferometric experiments can detect the direct action of the collapse, which is to localize the wavefunction in space. They include all experiments where a superposition is generated and, after some time, its interference pattern is probed. The action of CSL is a reduction of the interference contrast, which is quantified by the reduction of the off-diagonal terms of the statistical operator [6] where denotes the statistical operator described by quantum mechanics, and we defineExperiments testing such a reduction of the interference contrast are carried out with cold-atoms, [7] molecules [6] [8] [9] [10] , entangled diamonds [11] [12] and mechanical oscillators [13] .

Similarly, one can also quantify the minimum collapse strength to solve the measurement problem at the macroscopic level. Specifically, an estimate [6] can be obtained by requiring that a superposition of a single-layered graphene disk of radius m collapses in less than s.

Non-interferometric experiments

Non-interferometric experiments consist in CSL tests, which are not based on the preparation of a superposition. They exploit an indirect effect of the collapse, which consists in a Brownian motion induced by the interaction with the collapse noise. The effect of this noise amounts to an effective stochastic force acting on the system, and several experiments can be designed to quantify such a force. They include: [14]

where is the vacuum dielectric constant and is the light speed. This prediction of CSL can be tested [19] [20] [21] [22] by analyzing the X-ray emission spectrum from a bulk Germanium test mass.

Dissipative and colored extensions

The CSL model consistently describes the collapse mechanism as a dynamical process. It has, however, two weak points.

References

  1. 1 2 Pearle, Philip (1989-03-01). "Combining stochastic dynamical state-vector reduction with spontaneous localization". Physical Review A. 39 (5): 2277–2289. Bibcode:1989PhRvA..39.2277P. doi:10.1103/PhysRevA.39.2277. PMID   9901493.
  2. 1 2 Ghirardi, Gian Carlo; Pearle, Philip; Rimini, Alberto (1990-07-01). "Markov processes in Hilbert space and continuous spontaneous localization of systems of identical particles". Physical Review A. 42 (1): 78–89. Bibcode:1990PhRvA..42...78G. doi:10.1103/PhysRevA.42.78. PMID   9903779.
  3. 1 2 3 4 Bassi, Angelo; Ghirardi, GianCarlo (2003-06-01). "Dynamical reduction models". Physics Reports. 379 (5): 257–426. arXiv: quant-ph/0302164 . Bibcode:2003PhR...379..257B. doi:10.1016/S0370-1573(03)00103-0. ISSN   0370-1573. S2CID   119076099.
  4. 1 2 Ghirardi, G. C.; Rimini, A.; Weber, T. (1986-07-15). "Unified dynamics for microscopic and macroscopic systems". Physical Review D. 34 (2): 470–491. Bibcode:1986PhRvD..34..470G. doi:10.1103/PhysRevD.34.470. PMID   9957165.
  5. Adler, Stephen L (2007-10-16). "Lower and upper bounds on CSL parameters from latent image formation and IGM~heating". Journal of Physics A: Mathematical and Theoretical. 40 (44): 13501. arXiv: quant-ph/0605072 . doi:10.1088/1751-8121/40/44/c01. ISSN   1751-8113. S2CID   250685315.
  6. 1 2 3 4 5 Toroš, Marko; Gasbarri, Giulio; Bassi, Angelo (2017-12-20). "Colored and dissipative continuous spontaneous localization model and bounds from matter-wave interferometry". Physics Letters A. 381 (47): 3921–3927. arXiv: 1601.03672 . Bibcode:2017PhLA..381.3921T. doi:10.1016/j.physleta.2017.10.002. ISSN   0375-9601. S2CID   119208947.
  7. Kovachy, T.; Asenbaum, P.; Overstreet, C.; Donnelly, C. A.; Dickerson, S. M.; Sugarbaker, A.; Hogan, J. M.; Kasevich, M. A. (2015). "Quantum superposition at the half-metre scale". Nature. 528 (7583): 530–533. Bibcode:2015Natur.528..530K. doi:10.1038/nature16155. ISSN   1476-4687. PMID   26701053. S2CID   205246746.
  8. Eibenberger, Sandra; Gerlich, Stefan; Arndt, Markus; Mayor, Marcel; Tüxen, Jens (2013-08-14). "Matter–wave interference of particles selected from a molecular library with masses exceeding 10 000 amu". Physical Chemistry Chemical Physics. 15 (35): 14696–14700. arXiv: 1310.8343 . Bibcode:2013PCCP...1514696E. doi: 10.1039/C3CP51500A . ISSN   1463-9084. PMID   23900710.
  9. 1 2 3 Toroš, Marko; Bassi, Angelo (2018-02-15). "Bounds on quantum collapse models from matter-wave interferometry: calculational details". Journal of Physics A: Mathematical and Theoretical. 51 (11): 115302. arXiv: 1601.02931 . Bibcode:2018JPhA...51k5302T. doi:10.1088/1751-8121/aaabc6. ISSN   1751-8113. S2CID   118707096.
  10. Fein, Yaakov Y.; Geyer, Philipp; Zwick, Patrick; Kiałka, Filip; Pedalino, Sebastian; Mayor, Marcel; Gerlich, Stefan; Arndt, Markus (2019). "Quantum superposition of molecules beyond 25 kDa". Nature Physics. 15 (12): 1242–1245. Bibcode:2019NatPh..15.1242F. doi:10.1038/s41567-019-0663-9. ISSN   1745-2481. S2CID   203638258.
  11. Lee, K. C.; Sprague, M. R.; Sussman, B. J.; Nunn, J.; Langford, N. K.; Jin, X.-M.; Champion, T.; Michelberger, P.; Reim, K. F.; England, D.; Jaksch, D. (2011-12-02). "Entangling Macroscopic Diamonds at Room Temperature". Science. 334 (6060): 1253–1256. Bibcode:2011Sci...334.1253L. doi:10.1126/science.1211914. ISSN   0036-8075. PMID   22144620. S2CID   206536690.
  12. Belli, Sebastiano; Bonsignori, Riccarda; D'Auria, Giuseppe; Fant, Lorenzo; Martini, Mirco; Peirone, Simone; Donadi, Sandro; Bassi, Angelo (2016-07-12). "Entangling macroscopic diamonds at room temperature: Bounds on the continuous-spontaneous-localization parameters". Physical Review A. 94 (1): 012108. arXiv: 1601.07927 . Bibcode:2016PhRvA..94a2108B. doi:10.1103/PhysRevA.94.012108. hdl: 1887/135561 . S2CID   118344117.
  13. Schrinski, Björn; Yang, Yu; von Lüpke, Uwe; Bild, Marius; Chu, Yiwen; Hornberger, Klaus; Nimmrichter, Stefan; Fadel, Matteo (29 March 2023). "Macroscopic Quantum Test with Bulk Acoustic Wave Resonators". Physical Review Letters. 130 (13): 133604. arXiv: 2209.06635 . doi:10.1103/PhysRevLett.130.133604.
  14. Carlesso, Matteo; Donadi, Sandro; Ferialdi, Luca; Paternostro, Mauro; Ulbricht, Hendrik; Bassi, Angelo (February 2022). "Present status and future challenges of non-interferometric tests of collapse models". Nature Physics. 18 (3): 243–250. arXiv: 2203.04231 . Bibcode:2022NatPh..18..243C. doi:10.1038/s41567-021-01489-5. ISSN   1745-2481. S2CID   246949254.
  15. Adler, Stephen L; Ramazanoğlu, Fethi M (2007-10-16). "Photon-emission rate from atomic systems in the CSL model". Journal of Physics A: Mathematical and Theoretical. 40 (44): 13395–13406. arXiv: 0707.3134 . Bibcode:2007JPhA...4013395A. doi:10.1088/1751-8113/40/44/017. ISSN   1751-8113. S2CID   14772616.
  16. Bassi, Angelo; Ferialdi, Luca (2009-07-31). "Non-Markovian dynamics for a free quantum particle subject to spontaneous collapse in space: General solution and main properties". Physical Review A. 80 (1): 012116. arXiv: 0901.1254 . Bibcode:2009PhRvA..80a2116B. doi:10.1103/PhysRevA.80.012116. S2CID   119297164.
  17. Adler, Stephen L; Bassi, Angelo; Donadi, Sandro (2013-06-03). "On spontaneous photon emission in collapse models". Journal of Physics A: Mathematical and Theoretical. 46 (24): 245304. arXiv: 1011.3941 . Bibcode:2013JPhA...46x5304A. doi:10.1088/1751-8113/46/24/245304. ISSN   1751-8113. S2CID   119307432.
  18. Bassi, A.; Donadi, S. (2014-02-14). "Spontaneous photon emission from a non-relativistic free charged particle in collapse models: A case study". Physics Letters A. 378 (10): 761–765. arXiv: 1307.0560 . Bibcode:2014PhLA..378..761B. doi:10.1016/j.physleta.2014.01.002. ISSN   0375-9601. S2CID   118405901.
  19. Fu, Qijia (1997-09-01). "Spontaneous radiation of free electrons in a nonrelativistic collapse model". Physical Review A. 56 (3): 1806–1811. Bibcode:1997PhRvA..56.1806F. doi:10.1103/PhysRevA.56.1806.
  20. Morales, A.; Aalseth, C. E.; Avignone, F. T.; Brodzinski, R. L.; Cebrián, S.; Garcı́a, E.; Irastorza, I. G.; Kirpichnikov, I. V.; Klimenko, A. A.; Miley, H. S.; Morales, J. (2002-04-18). "Improved constraints on wimps from the international germanium experiment IGEX". Physics Letters B. 532 (1): 8–14. arXiv: hep-ex/0110061 . Bibcode:2002PhLB..532....8M. doi: 10.1016/S0370-2693(02)01545-9 . ISSN   0370-2693.
  21. Curceanu, C.; Bartalucci, S.; Bassi, A.; Bazzi, M.; Bertolucci, S.; Berucci, C.; Bragadireanu, A. M.; Cargnelli, M.; Clozza, A.; De Paolis, L.; Di Matteo, S. (2016-03-01). "Spontaneously Emitted X-rays: An Experimental Signature of the Dynamical Reduction Models". Foundations of Physics. 46 (3): 263–268. arXiv: 1601.06617 . Bibcode:2016FoPh...46..263C. doi:10.1007/s10701-015-9923-4. ISSN   1572-9516. S2CID   53403588.
  22. Piscicchia, Kristian; Bassi, Angelo; Curceanu, Catalina; Grande, Raffaele Del; Donadi, Sandro; Hiesmayr, Beatrix C.; Pichler, Andreas (2017). "CSL Collapse Model Mapped with the Spontaneous Radiation". Entropy. 19 (7): 319. arXiv: 1710.01973 . Bibcode:2017Entrp..19..319P. doi: 10.3390/e19070319 .
  23. 1 2 Kovachy, Tim; Hogan, Jason M.; Sugarbaker, Alex; Dickerson, Susannah M.; Donnelly, Christine A.; Overstreet, Chris; Kasevich, Mark A. (2015-04-08). "Matter Wave Lensing to Picokelvin Temperatures". Physical Review Letters. 114 (14): 143004. arXiv: 1407.6995 . Bibcode:2015PhRvL.114n3004K. doi: 10.1103/PhysRevLett.114.143004 . PMID   25910118.
  24. 1 2 3 4 Bilardello, Marco; Donadi, Sandro; Vinante, Andrea; Bassi, Angelo (2016-11-15). "Bounds on collapse models from cold-atom experiments". Physica A: Statistical Mechanics and Its Applications. 462: 764–782. arXiv: 1605.01891 . Bibcode:2016PhyA..462..764B. doi:10.1016/j.physa.2016.06.134. ISSN   0378-4371. S2CID   55562244.
  25. Bahrami, M. (2018-05-18). "Testing collapse models by a thermometer". Physical Review A. 97 (5): 052118. arXiv: 1801.03636 . Bibcode:2018PhRvA..97e2118B. doi:10.1103/PhysRevA.97.052118.
  26. Adler, Stephen L.; Vinante, Andrea (2018-05-18). "Bulk heating effects as tests for collapse models". Physical Review A. 97 (5): 052119. arXiv: 1801.06857 . Bibcode:2018PhRvA..97e2119A. doi:10.1103/PhysRevA.97.052119. S2CID   51687442.
  27. 1 2 Adler, Stephen L.; Bassi, Angelo; Carlesso, Matteo; Vinante, Andrea (2019-05-10). "Testing continuous spontaneous localization with Fermi liquids". Physical Review D. 99 (10): 103001. arXiv: 1901.10963 . Bibcode:2019PhRvD..99j3001A. doi: 10.1103/PhysRevD.99.103001 .
  28. Tilloy, Antoine; Stace, Thomas M. (2019-08-21). "Neutron Star Heating Constraints on Wave-Function Collapse Models". Physical Review Letters. 123 (8): 080402. arXiv: 1901.05477 . Bibcode:2019PhRvL.123h0402T. doi:10.1103/PhysRevLett.123.080402. PMID   31491197. S2CID   119272121.
  29. Romero-Isart, Oriol (2011-11-28). "Quantum superposition of massive objects and collapse models". Physical Review A. 84 (5): 052121. arXiv: 1110.4495 . Bibcode:2011PhRvA..84e2121R. doi:10.1103/PhysRevA.84.052121. S2CID   118401637.
  30. Bahrami, M.; Paternostro, M.; Bassi, A.; Ulbricht, H. (2014-05-29). "Proposal for a Noninterferometric Test of Collapse Models in Optomechanical Systems". Physical Review Letters. 112 (21): 210404. arXiv: 1402.5421 . Bibcode:2014PhRvL.112u0404B. doi:10.1103/PhysRevLett.112.210404. S2CID   53337065.
  31. Nimmrichter, Stefan; Hornberger, Klaus; Hammerer, Klemens (2014-07-10). "Optomechanical Sensing of Spontaneous Wave-Function Collapse". Physical Review Letters. 113 (2): 020405. arXiv: 1405.2868 . Bibcode:2014PhRvL.113b0405N. doi:10.1103/PhysRevLett.113.020405. hdl: 11858/00-001M-0000-0024-7705-F . PMID   25062146. S2CID   13151177.
  32. Diósi, Lajos (2015-02-04). "Testing Spontaneous Wave-Function Collapse Models on Classical Mechanical Oscillators". Physical Review Letters. 114 (5): 050403. arXiv: 1411.4341 . Bibcode:2015PhRvL.114e0403D. doi:10.1103/PhysRevLett.114.050403. PMID   25699424. S2CID   14609818.
  33. 1 2 Vinante, A.; Bahrami, M.; Bassi, A.; Usenko, O.; Wijts, G.; Oosterkamp, T. H. (2016-03-02). "Upper Bounds on Spontaneous Wave-Function Collapse Models Using Millikelvin-Cooled Nanocantilevers". Physical Review Letters. 116 (9): 090402. arXiv: 1510.05791 . Bibcode:2016PhRvL.116i0402V. doi:10.1103/PhysRevLett.116.090402. hdl: 1887/46827 . PMID   26991158. S2CID   10215308.
  34. 1 2 Carlesso, Matteo; Paternostro, Mauro; Ulbricht, Hendrik; Vinante, Andrea; Bassi, Angelo (2018-08-17). "Non-interferometric test of the continuous spontaneous localization model based on rotational optomechanics". New Journal of Physics. 20 (8): 083022. arXiv: 1708.04812 . Bibcode:2018NJPh...20h3022C. doi: 10.1088/1367-2630/aad863 . ISSN   1367-2630.
  35. Vinante, A.; Mezzena, R.; Falferi, P.; Carlesso, M.; Bassi, A. (2017-09-12). "Improved Noninterferometric Test of Collapse Models Using Ultracold Cantilevers". Physical Review Letters. 119 (11): 110401. arXiv: 1611.09776 . Bibcode:2017PhRvL.119k0401V. doi:10.1103/PhysRevLett.119.110401. hdl: 11368/2910142 . PMID   28949215. S2CID   40171091.
  36. Carlesso, Matteo; Vinante, Andrea; Bassi, Angelo (2018-08-17). "Multilayer test masses to enhance the collapse noise". Physical Review A. 98 (2): 022122. arXiv: 1805.11037 . Bibcode:2018PhRvA..98b2122C. doi:10.1103/PhysRevA.98.022122. S2CID   51689393.
  37. Vinante, A.; Carlesso, M.; Bassi, A.; Chiasera, A.; Varas, S.; Falferi, P.; Margesin, B.; Mezzena, R.; Ulbricht, H. (2020-09-03). "Narrowing the Parameter Space of Collapse Models with Ultracold Layered Force Sensors". Physical Review Letters. 125 (10): 100404. arXiv: 2002.09782 . Bibcode:2020PhRvL.125j0404V. doi:10.1103/PhysRevLett.125.100404. PMID   32955323. S2CID   211258654.
  38. Carlesso, Matteo; Bassi, Angelo; Falferi, Paolo; Vinante, Andrea (2016-12-23). "Experimental bounds on collapse models from gravitational wave detectors". Physical Review D. 94 (12): 124036. arXiv: 1606.04581 . Bibcode:2016PhRvD..94l4036C. doi:10.1103/PhysRevD.94.124036. hdl: 11368/2889661 . S2CID   73690869.
  39. Helou, Bassam; Slagmolen, B. J. J.; McClelland, David E.; Chen, Yanbei (2017-04-28). "LISA pathfinder appreciably constrains collapse models". Physical Review D. 95 (8): 084054. arXiv: 1606.03637 . Bibcode:2017PhRvD..95h4054H. doi: 10.1103/PhysRevD.95.084054 .
  40. Zheng, Di; Leng, Yingchun; Kong, Xi; Li, Rui; Wang, Zizhe; Luo, Xiaohui; Zhao, Jie; Duan, Chang-Kui; Huang, Pu; Du, Jiangfeng; Carlesso, Matteo (2020-01-17). "Room temperature test of the continuous spontaneous localization model using a levitated micro-oscillator". Physical Review Research. 2 (1): 013057. arXiv: 1907.06896 . Bibcode:2020PhRvR...2a3057Z. doi: 10.1103/PhysRevResearch.2.013057 .
  41. 1 2 Pontin, A.; Bullier, N. P.; Toroš, M.; Barker, P. F. (2020). "An ultra-narrow line width levitated nano-oscillator for testing dissipative wavefunction collapse". Physical Review Research. 2 (2): 023349. arXiv: 1907.06046 . Bibcode:2020PhRvR...2b3349P. doi:10.1103/PhysRevResearch.2.023349. S2CID   196623361.
  42. Vinante, A.; Pontin, A.; Rashid, M.; Toroš, M.; Barker, P. F.; Ulbricht, H. (2019-07-16). "Testing collapse models with levitated nanoparticles: Detection challenge". Physical Review A. 100 (1): 012119. arXiv: 1903.08492 . Bibcode:2019PhRvA.100a2119V. doi:10.1103/PhysRevA.100.012119. S2CID   84846811.
  43. Komori, Kentaro; Enomoto, Yutaro; Ooi, Ching Pin; Miyazaki, Yuki; Matsumoto, Nobuyuki; Sudhir, Vivishek; Michimura, Yuta; Ando, Masaki (2020-01-17). "Attonewton-meter torque sensing with a macroscopic optomechanical torsion pendulum". Physical Review A. 101 (1): 011802. arXiv: 1907.13139 . Bibcode:2020PhRvA.101a1802K. doi:10.1103/PhysRevA.101.011802. hdl: 1721.1/125376 . S2CID   214317541.
  44. 1 2 Smirne, Andrea; Bassi, Angelo (2015-08-05). "Dissipative Continuous Spontaneous Localization (CSL) model". Scientific Reports. 5 (1): 12518. arXiv: 1408.6446 . Bibcode:2015NatSR...512518S. doi: 10.1038/srep12518 . ISSN   2045-2322. PMC   4525142 . PMID   26243034.
  45. Di Bartolomeo, Giovanni; Carlesso, Matteo; Piscicchia, Kristian; Curceanu, Catalina; Derakhshani, Maaneli; Diósi, Lajos (2023-07-06). "Linear-friction many-body equation for dissipative spontaneous wave-function collapse". Physical Review A. 108 (1): 012202. arXiv: 2301.07661 . doi:10.1103/PhysRevA.108.012202. ISSN   2469-9926.
  46. Nobakht, J.; Carlesso, M.; Donadi, S.; Paternostro, M.; Bassi, A. (2018-10-08). "Unitary unraveling for the dissipative continuous spontaneous localization model: Application to optomechanical experiments". Physical Review A. 98 (4): 042109. arXiv: 1808.01143 . Bibcode:2018PhRvA..98d2109N. doi:10.1103/PhysRevA.98.042109. hdl: 11368/2929989 . S2CID   51959822.
  47. Di Bartolomeo, Giovanni; Carlesso, Matteo (2024-04-01). "Experimental bounds on linear-friction dissipative collapse models from levitated optomechanics". New Journal of Physics. 26 (4): 043006. arXiv: 2401.04665 . doi:10.1088/1367-2630/ad3842. ISSN   1367-2630.
  48. 1 2 Carlesso, Matteo; Ferialdi, Luca; Bassi, Angelo (2018-09-18). "Colored collapse models from the non-interferometric perspective". The European Physical Journal D. 72 (9): 159. arXiv: 1805.10100 . Bibcode:2018EPJD...72..159C. doi: 10.1140/epjd/e2018-90248-x . ISSN   1434-6079.
  49. Bassi, A.; Deckert, D.-A.; Ferialdi, L. (2010-12-01). "Breaking quantum linearity: Constraints from human perception and cosmological implications". EPL (Europhysics Letters). 92 (5): 50006. arXiv: 1011.3767 . Bibcode:2010EL.....9250006B. doi:10.1209/0295-5075/92/50006. ISSN   0295-5075. S2CID   119186239.