Bikas Chakrabarti

Last updated

Bikas K. Chakrabarti
Bkc-wiki-oct2022.jpg
Born (1952-12-14) 14 December 1952 (age 71)
Calcutta, India
Alma mater Calcutta University
Known for
Awards Shanti Swarup Bhatnagar Award
Scientific career
Fields Physics, Economics
Institutions Saha Institute of Nuclear Physics, Kolkata
Indian Statistical Institute, Kolkata
S. N. Bose National Centre for Basic Sciences, Kolkata

Bikas Kanta Chakrabarti (born 14 December 1952 in Kolkata (erstwhile Calcutta) is an Indian physicist. [1] At present he is INSA Scientist (Physics) at the Saha Institute of Nuclear Physics & Visiting Professor (Economics) at the Indian Statistical Institute, Kolkata, India.

Contents

Biography

Chakrabarti received his Ph.D. degree from Calcutta University in 1979. Following post-doctoral work at the University of Oxford and the University of Cologne, he joined the faculty of Saha Institute of Nuclear Physics (SINP) in 1983. He is S. S. Bhatnagar Prize awardee (1997) and former J. C. Bose National Fellow (2011-2020). He is a former director of SINP. At present he is INSA Scientist at SINP (2021-) and also Honorary Visiting Professor of economics (2007-) at the Indian Statistical Institute. Emeritus Professor of SINP and of S.N. Bose National Centre for Basic Sciences. Much of Chakrabarti's research has centered around statistical physics & condensed matter physics (including Quantum computing & Quantum annealing; see also D-Wave Systems & Timeline of quantum computing) and their application to social sciences (see e.g., Econophysics). He has authored several books and papers in the fields of physics and economics. Chakrabarti is (and was) member of the editorial boards of a number of physics and economics journals and book series (from Springer & Cambridge University Press).

Honors, Awards & Recognitions

Awards, Fellowships, etc

Peer Recognition/Appreciation

Publications

Books

Reviews

Related Research Articles

In quantum computing, a quantum algorithm is an algorithm that runs on a realistic model of quantum computation, the most commonly used model being the quantum circuit model of computation. A classical algorithm is a finite sequence of instructions, or a step-by-step procedure for solving a problem, where each step or instruction can be performed on a classical computer. Similarly, a quantum algorithm is a step-by-step procedure, where each of the steps can be performed on a quantum computer. Although all classical algorithms can also be performed on a quantum computer, the term quantum algorithm is generally reserved for algorithms that seem inherently quantum, or use some essential feature of quantum computation such as quantum superposition or quantum entanglement.

Econophysics is a non-orthodox interdisciplinary research field, applying theories and methods originally developed by physicists in order to solve problems in economics, usually those including uncertainty or stochastic processes and nonlinear dynamics. Some of its application to the study of financial markets has also been termed statistical finance referring to its roots in statistical physics. Econophysics is closely related to social physics.

Critical exponents describe the behavior of physical quantities near continuous phase transitions. It is believed, though not proven, that they are universal, i.e. they do not depend on the details of the physical system, but only on some of its general features. For instance, for ferromagnetic systems at thermal equilibrium, the critical exponents depend only on:

<span class="mw-page-title-main">El Farol Bar problem</span>

The El Farol bar problem is a problem in game theory. Every Thursday night, a fixed population want to go have fun at the El Farol Bar, unless it's too crowded.

<span class="mw-page-title-main">Saha Institute of Nuclear Physics</span> Research institute in Bidhannagar, Kolkata, India

The Saha Institute of Nuclear Physics (SINP) is an institution of basic research and training in physical and biophysical sciences located in Bidhannagar, Kolkata, India. The institute is named after the famous Indian physicist Meghnad Saha.

Quantum annealing (QA) is an optimization process for finding the global minimum of a given objective function over a given set of candidate solutions, by a process using quantum fluctuations. Quantum annealing is used mainly for problems where the search space is discrete with many local minima; such as finding the ground state of a spin glass or the traveling salesman problem. The term "quantum annealing" was first proposed in 1988 by B. Apolloni, N. Cesa Bianchi and D. De Falco as a quantum-inspired classical algorithm. It was formulated in its present form by T. Kadowaki and H. Nishimori in 1998 though an imaginary-time variant without quantum coherence had been discussed by A. B. Finnila, M. A. Gomez, C. Sebenik and J. D. Doll in 1994.

<span class="mw-page-title-main">D-Wave Systems</span> Canadian quantum computing company

D-Wave Quantum Systems Inc. is a Canadian quantum computing company, based in Burnaby, British Columbia. D-Wave claims to be the world's first company to sell computers that exploit quantum effects in their operation. D-Wave's early customers include Lockheed Martin, the University of Southern California, Google/NASA, and Los Alamos National Lab.

Adiabatic quantum computation (AQC) is a form of quantum computing which relies on the adiabatic theorem to perform calculations and is closely related to quantum annealing.

Daniel Amihud Lidar is the holder of the Viterbi Professorship of Engineering at the University of Southern California, where he is a professor of electrical engineering, chemistry, physics & astronomy. He is the director and co-founder of the USC Center for Quantum Information Science & Technology (CQIST), the director of the USC-IBM Quantum Innovation Center, as well as scientific director of the USC-Lockheed Martin Quantum Computing Center, notable for his research on control of quantum systems and quantum information processing.

In statistical mechanics, the Lee–Yang theorem states that if partition functions of certain models in statistical field theory with ferromagnetic interactions are considered as functions of an external field, then all zeros are purely imaginary. The first version was proved for the Ising model by T. D. Lee and C. N. Yang. Their result was later extended to more general models by several people. Asano in 1970 extended the Lee–Yang theorem to the Heisenberg model and provided a simpler proof using Asano contractions. Simon & Griffiths (1973) extended the Lee–Yang theorem to certain continuous probability distributions by approximating them by a superposition of Ising models. Newman (1974) gave a general theorem stating roughly that the Lee–Yang theorem holds for a ferromagnetic interaction provided it holds for zero interaction. Lieb & Sokal (1981) generalized Newman's result from measures on R to measures on higher-dimensional Euclidean space.

A spin model is a mathematical model used in physics primarily to explain magnetism. Spin models may either be classical or quantum mechanical in nature. Spin models have been studied in quantum field theory as examples of integrable models. Spin models are also used in quantum information theory and computability theory in theoretical computer science. The theory of spin models is a far reaching and unifying topic that cuts across many fields.

Kinetic exchange models are multi-agent dynamic models inspired by the statistical physics of energy distribution, which try to explain the robust and universal features of income/wealth distributions.

Quantum finance is an interdisciplinary research field, applying theories and methods developed by quantum physicists and economists in order to solve problems in finance. It is a branch of econophysics. Today several financial applications like fraud detection, portfolio optimization, product recommendation and stock price prediction are being explored using quantum computing.

<span class="mw-page-title-main">Quantum simulator</span> Simulators of quantum mechanical systems

Quantum simulators permit the study of a quantum system in a programmable fashion. In this instance, simulators are special purpose devices designed to provide insight about specific physics problems. Quantum simulators may be contrasted with generally programmable "digital" quantum computers, which would be capable of solving a wider class of quantum problems.

D-Wave Two is the second commercially available quantum computer, and the successor to the first commercially available quantum computer, D-Wave One. Both computers were developed by Canadian company D-Wave Systems. The computers are not general purpose, but rather are designed for quantum annealing. Specifically, the computers are designed to use quantum annealing to solve a single type of problem known as quadratic unconstrained binary optimization. As of 2015, it was still debated whether large-scale entanglement takes place in D-Wave Two, and whether current or future generations of D-Wave computers will have any advantage over classical computers.

<span class="mw-page-title-main">Quantum machine learning</span> Interdisciplinary research area at the intersection of quantum physics and machine learning

Quantum machine learning is the integration of quantum algorithms within machine learning programs.

<span class="mw-page-title-main">Bidyendu Mohan Deb</span> Indian chemist (born 1942)

Bidyendu Mohan Deb is an Indian theoretical chemist, chemical physicist and a professor at the Indian Institute of Science Education and Research, Kolkata (IISER). he is known for his studies in theoretical chemistry and chemical physics. He is an elected fellow of the International Union of Pure and Applied Chemistry, The World Academy of Sciences, Indian National Science Academy and the Indian Academy of Sciences. The Council of Scientific and Industrial Research, the apex agency of the Government of India for scientific research, awarded him the Shanti Swarup Bhatnagar Prize for Science and Technology, one of the highest Indian science awards, in 1981, for his contributions to chemical sciences.

<span class="mw-page-title-main">Chanchal Kumar Majumdar</span> Indian physicist (1938–2000)

Chanchal Kumar Majumdar was an Indian condensed matter physicist and the founder director of S.N. Bose National Centre for Basic Sciences. Known for his research in quantum mechanics, Majumdar was an elected fellow of all the three major Indian science academies – the Indian National Science Academy, the National Academy of Sciences, India, and the Indian Academy of Sciences – as well a member of the New York Academy of Sciences and the American Physical Society.

<span class="mw-page-title-main">Claude Itzykson</span> French theoretical physicist (1938–1995)

Claude Georges Itzykson, was a French theoretical physicist who worked in quantum field theory and statistical mechanics.

<span class="mw-page-title-main">Anirban Chakraborti</span> Indian physicist (born 1975)

Anirban Chakraborti is an Indian physicist and professor of econophysics at the School of Computational and Integrative Sciences at Jawaharlal Nehru University in New Delhi. Anirban Chakraborti has published work mainly in the fields of econophysics and data science.

References

  1. "INSA". Insaindia.org. Archived from the original on 4 March 2016. Retrieved 28 September 2013.
  2. "Young Scientist Awardees". INSA. Archived from the original on 11 October 2013. Retrieved 28 September 2013.
  3. see External Link below on “Influential” & “Elegant” papers from “Kolkata School”,
  4. see External Link below on “Father of Econophysics”,
  5. see External Link below on “Earliest work in laying foundation of Quantum Annealing”
  6. see External Link below on "Historic conference in Kolkata (India, 1995)"
  7. see External Link below on “Adiabatic quantum Computation ... has attracted intense interest due to its potential speedup”,
  8. see External Link below on "Foundational paper: 25 years of random asset exchange modeling"
  9. see External Link below on "Leiden University Econophysics Prospectus (2012-2025)"