John A. Smolin | |
---|---|
Born | 1967 (age 56–57) |
Alma mater | Massachusetts Institute of Technology (S.B., Physics, 1989) University of California, Los Angeles (Ph.D., Physics, 1996) [1] |
Known for | Quantum cryptography, The Smolin Spiral |
Scientific career | |
Fields | Quantum information theory |
Institutions | Thomas J. Watson Research Center |
John A. Smolin (born 1967) is an American physicist and Fellow of the American Physical Society at IBM's Thomas J. Watson Research Center.
Smolin is best known for his work in quantum information theory, where, with collaborators, he introduced several important techniques, [2] including entanglement distillation, for quantum error-correction and the faithful transmission of quantum information through noisy quantum channels, as well as for entanglement-assisted transmission of classical information. He helped elucidate the complex relations between classical and quantum capacities of various channels [3] as well as phenomena such as data hiding and data unlocking that have no analog in classical information theory.
Together with Charles H. Bennett he built the world's first working demonstration of quantum cryptography in 1989, [4] driven by software written by Francois Bessette, Gilles Brassard and Louis Salvail and implementing the BB84 quantum key distribution protocol.
Smolin coined the term "Church of the Larger Hilbert Space" to describe the habit of regarding every mixed state of a quantum system as a pure entangled state of a larger system, and every irreversible evolution as a reversible (unitary) evolution of a larger system. [5]
A quantum computer is a computer that takes advantage of quantum mechanical phenomena.
Quantum information is the information of the state of a quantum system. It is the basic entity of study in quantum information theory, and can be manipulated using quantum information processing techniques. Quantum information refers to both the technical definition in terms of Von Neumann entropy and the general computational term.
Quantum entanglement is the phenomenon of a group of particles being generated, interacting, or sharing spatial proximity in such a way that the quantum state of each particle of the group cannot be described independently of the state of the others, including when the particles are separated by a large distance. The topic of quantum entanglement is at the heart of the disparity between classical and quantum physics: entanglement is a primary feature of quantum mechanics not present in classical mechanics.
Quantum key distribution (QKD) is a secure communication method that implements a cryptographic protocol involving components of quantum mechanics. It enables two parties to produce a shared random secret key known only to them, which then can be used to encrypt and decrypt messages. The process of quantum key distribution is not to be confused with quantum cryptography, as it is the best-known example of a quantum-cryptographic task.
Quantum information science is a field that combines the principles of quantum mechanics with information theory to study the processing, analysis, and transmission of information. It covers both theoretical and experimental aspects of quantum physics, including the limits of what can be achieved with quantum information. The term quantum information theory is sometimes used, but it does not include experimental research and can be confused with a subfield of quantum information science that deals with the processing of quantum information.
Quantum error correction (QEC) is used in quantum computing to protect quantum information from errors due to decoherence and other quantum noise. Quantum error correction is theorised as essential to achieve fault tolerant quantum computing that can reduce the effects of noise on stored quantum information, faulty quantum gates, faulty quantum preparation, and faulty measurements. This would allow algorithms of greater circuit depth.
Charles Henry Bennett is a physicist, information theorist and IBM Fellow at IBM Research. Bennett's recent work at IBM has concentrated on a re-examination of the physical basis of information, applying quantum physics to the problems surrounding information exchange. He has played a major role in elucidating the interconnections between physics and information, particularly in the realm of quantum computation, but also in cellular automata and reversible computing. He discovered, with Gilles Brassard, the concept of quantum cryptography and is one of the founding fathers of modern quantum information theory.
Gilles Brassard, is a faculty member of the Université de Montréal, where he has been a Full Professor since 1988 and Canada Research Chair since 2001.
William "Bill" Kent Wootters is an American theoretical physicist, and one of the founders of the field of quantum information theory. In a 1982 joint paper with Wojciech H. Zurek, Wootters proved the no cloning theorem, at the same time as Dennis Dieks, and independently of James L. Park who had formulated the no-cloning theorem in 1970. He is known for his contributions to the theory of quantum entanglement including quantitative measures of it, entanglement-assisted communication and entanglement distillation. The term qubit, denoting the basic unit of quantum information, originated in a conversation between Wootters and Benjamin Schumacher in 1992.
Squashed entanglement, also called CMI entanglement, is an information theoretic measure of quantum entanglement for a bipartite quantum system. If is the density matrix of a system composed of two subsystems and , then the CMI entanglement of system is defined by
Entanglement distillation is the transformation of N copies of an arbitrary entangled state into some number of approximately pure Bell pairs, using only local operations and classical communication.
Quantum cryptography is the science of exploiting quantum mechanical properties to perform cryptographic tasks. The best known example of quantum cryptography is quantum key distribution, which offers an information-theoretically secure solution to the key exchange problem. The advantage of quantum cryptography lies in the fact that it allows the completion of various cryptographic tasks that are proven or conjectured to be impossible using only classical communication. For example, it is impossible to copy data encoded in a quantum state. If one attempts to read the encoded data, the quantum state will be changed due to wave function collapse. This could be used to detect eavesdropping in quantum key distribution (QKD).
In the theory of quantum communication, the entanglement-assisted classical capacity of a quantum channel is the highest rate at which classical information can be transmitted from a sender to receiver when they share an unlimited amount of noiseless entanglement. It is given by the quantum mutual information of the channel, which is the input-output quantum mutual information maximized over all pure bipartite quantum states with one system transmitted through the channel. This formula is the natural generalization of Shannon's noisy channel coding theorem, in the sense that this formula is equal to the capacity, and there is no need to regularize it. An additional feature that it shares with Shannon's formula is that a noiseless classical or quantum feedback channel cannot increase the entanglement-assisted classical capacity. The entanglement-assisted classical capacity theorem is proved in two parts: the direct coding theorem and the converse theorem. The direct coding theorem demonstrates that the quantum mutual information of the channel is an achievable rate, by a random coding strategy that is effectively a noisy version of the super-dense coding protocol. The converse theorem demonstrates that this rate is optimal by making use of the strong subadditivity of quantum entropy.
The noisy-storage model refers to a cryptographic model employed in quantum cryptography. It assumes that the quantum memory device of an attacker (adversary) trying to break the protocol is imperfect (noisy). The main goal of this model is to enable the secure implementation of two-party cryptographic primitives, such as bit commitment, oblivious transfer and secure identification.
Quantum illumination is a paradigm for target detection that employs quantum entanglement between a signal electromagnetic mode and an idler electromagnetic mode, as well as joint measurement of these modes. The signal mode is propagated toward a region of space, and it is either lost or reflected, depending on whether a target is absent or present, respectively. In principle, quantum illumination can be beneficial even if the original entanglement is completely destroyed by a lossy and noisy environment.
Sandu Popescu is a Romanian-British physicist working in the foundations of quantum mechanics and quantum information.
Bound entanglement is a weak form of quantum entanglement, from which no singlets can be distilled with local operations and classical communication (LOCC).
Mark McMahon Wilde is an American quantum information scientist. He is an Associate Professor in the School of Electrical and Computer Engineering at Cornell University, and he is also a Fields Member in the School of Applied and Engineering Physics and the Department of Computer Science at Cornell.
The current state of quantum computing is referred to as the noisy intermediate-scale quantum (NISQ) era, characterized by quantum processors containing up to 1000 qubits which are not advanced enough yet for fault-tolerance or large enough to achieve quantum advantage. These processors, which are sensitive to their environment (noisy) and prone to quantum decoherence, are not yet capable of continuous quantum error correction. This intermediate-scale is defined by the quantum volume, which is based on the moderate number of qubits and gate fidelity. The term NISQ was coined by John Preskill in 2018.