Wannier function

Last updated
Wannier functions of triple- and single-bonded nitrogen dimers in palladium nitride. N2 Wannier.png
Wannier functions of triple- and single-bonded nitrogen dimers in palladium nitride.

The Wannier functions are a complete set of orthogonal functions used in solid-state physics. They were introduced by Gregory Wannier in 1937. [1] [2] Wannier functions are the localized molecular orbitals of crystalline systems.

Contents

The Wannier functions for different lattice sites in a crystal are orthogonal, allowing a convenient basis for the expansion of electron states in certain regimes. Wannier functions have found widespread use, for example, in the analysis of binding forces acting on electrons.

Definition

Example of a localized Wannier function of titanium in barium titanate (BaTiO3) WanF-BaTiO3.png
Example of a localized Wannier function of titanium in barium titanate (BaTiO3)

Although, like localized molecular orbitals, Wannier functions can be chosen in many different ways, [3] the original, [1] simplest, and most common definition in solid-state physics is as follows. Choose a single band in a perfect crystal, and denote its Bloch states by

where uk(r) has the same periodicity as the crystal. Then the Wannier functions are defined by

,

where

where "BZ" denotes the Brillouin zone, which has volume Ω.

Properties

On the basis of this definition, the following properties can be proven to hold: [4]

In other words, a Wannier function only depends on the quantity (rR). As a result, these functions are often written in the alternative notation

,

where the sum is over each lattice vector R in the crystal.

Wannier functions have been extended to nearly periodic potentials as well. [5]

Localization

The Bloch states ψk(r) are defined as the eigenfunctions of a particular Hamiltonian, and are therefore defined only up to an overall phase. By applying a phase transformation e(k) to the functions ψk(r), for any (real) function θ(k), one arrives at an equally valid choice. While the change has no consequences for the properties of the Bloch states, the corresponding Wannier functions are significantly changed by this transformation.

One therefore uses the freedom to choose the phases of the Bloch states in order to give the most convenient set of Wannier functions. In practice, this is usually the maximally-localized set, in which the Wannier function ϕR is localized around the point R and rapidly goes to zero away from R. For the one-dimensional case, it has been proved by Kohn [6] that there is always a unique choice that gives these properties (subject to certain symmetries). This consequently applies to any separable potential in higher dimensions; the general conditions are not established, and are the subject of ongoing research. [7]

A Pipek-Mezey style localization scheme has also been recently proposed for obtaining Wannier functions. [8] Contrary to the maximally localized Wannier functions (which are an application of the Foster-Boys scheme to crystalline systems), the Pipek-Mezey Wannier functions do not mix σ and π orbitals.

Rigorous results

The existence of exponentially localized Wannier functions in insulators was proved mathematically in 2006. [7]

Modern theory of polarization

Wannier functions have recently found application in describing the polarization in crystals, for example, ferroelectrics. The modern theory of polarization is pioneered by Raffaele Resta and David Vanderbilt. See for example, Berghold, [9] and Nakhmanson, [10] and a power-point introduction by Vanderbilt. [11] The polarization per unit cell in a solid can be defined as the dipole moment of the Wannier charge density:

where the summation is over the occupied bands, and Wn is the Wannier function localized in the cell for band n. The change in polarization during a continuous physical process is the time derivative of the polarization and also can be formulated in terms of the Berry phase of the occupied Bloch states. [4] [12]

Wannier interpolation

Wannier functions are often used to interpolate bandstructures calculated ab initio on a coarse grid of k-points to any arbitrary k-point. This is particularly useful for evaluation of Brillouin-zone integrals on dense grids and searching of Weyl points, and also taking derivatives in the k-space. This approach is similar in spirit to the tight binding approximation, but in contrast allows for an exact description of bands in a certain energy range. Wannier interpolation schemes have been derived for spectral properties, [13] anomalous Hall conductivity, [14] orbital magnetization, [15] thermoelectric and electronic transport properties, [16] gyrotropic effects, [17] shift current, [18] spin Hall conductivity [19] [20] and other effects.

See also

Related Research Articles

In theoretical physics, the term renormalization group (RG) refers to a formal apparatus that allows systematic investigation of the changes of a physical system as viewed at different scales. In particle physics, it reflects the changes in the underlying force laws as the energy scale at which physical processes occur varies, energy/momentum and resolution distance scales being effectively conjugate under the uncertainty principle.

A superlattice is a periodic structure of layers of two materials. Typically, the thickness of one layer is several nanometers. It can also refer to a lower-dimensional structure such as an array of quantum dots or quantum wells.

<span class="mw-page-title-main">Sphaleron</span> Solution to field equations in Standard Model particle physics

A sphaleron is a static (time-independent) solution to the electroweak field equations of the Standard Model of particle physics, and is involved in certain hypothetical processes that violate baryon and lepton numbers. Such processes cannot be represented by perturbative methods such as Feynman diagrams, and are therefore called non-perturbative. Geometrically, a sphaleron is a saddle point of the electroweak potential.

<span class="mw-page-title-main">Pseudopotential</span>

In physics, a pseudopotential or effective potential is used as an approximation for the simplified description of complex systems. Applications include atomic physics and neutron scattering. The pseudopotential approximation was first introduced by Hans Hellmann in 1934.

<span class="mw-page-title-main">Hofstadter's butterfly</span> Fractal describing the theorised behaviour of electrons in a magnetic field

In condensed matter physics, Hofstadter's butterfly is a graph of the spectral properties of non-interacting two-dimensional electrons in a perpendicular magnetic field in a lattice. The fractal, self-similar nature of the spectrum was discovered in the 1976 Ph.D. work of Douglas Hofstadter and is one of the early examples of modern scientific data visualization. The name reflects the fact that, as Hofstadter wrote, "the large gaps [in the graph] form a very striking pattern somewhat resembling a butterfly."

In physics, the Bethe ansatz is an ansatz for finding the exact wavefunctions of certain quantum many-body models, most commonly for one-dimensional lattice models. It was first used by Hans Bethe in 1931 to find the exact eigenvalues and eigenvectors of the one-dimensional antiferromagnetic isotropic (XXX) Heisenberg model.

<span class="mw-page-title-main">Angle-resolved photoemission spectroscopy</span> Experimental technique to determine the distribution of electrons in solids

Angle-resolved photoemission spectroscopy (ARPES) is an experimental technique used in condensed matter physics to probe the allowed energies and momenta of the electrons in a material, usually a crystalline solid. It is based on the photoelectric effect, in which an incoming photon of sufficient energy ejects an electron from the surface of a material. By directly measuring the kinetic energy and emission angle distributions of the emitted photoelectrons, the technique can map the electronic band structure and Fermi surfaces. ARPES is best suited for the study of one- or two-dimensional materials. It has been used by physicists to investigate high-temperature superconductors, graphene, topological materials, quantum well states, and materials exhibiting charge density waves.

<span class="mw-page-title-main">Quantum vortex</span> Quantized flux circulation of some physical quantity

In physics, a quantum vortex represents a quantized flux circulation of some physical quantity. In most cases, quantum vortices are a type of topological defect exhibited in superfluids and superconductors. The existence of quantum vortices was first predicted by Lars Onsager in 1949 in connection with superfluid helium. Onsager reasoned that quantisation of vorticity is a direct consequence of the existence of a superfluid order parameter as a spatially continuous wavefunction. Onsager also pointed out that quantum vortices describe the circulation of superfluid and conjectured that their excitations are responsible for superfluid phase transitions. These ideas of Onsager were further developed by Richard Feynman in 1955 and in 1957 were applied to describe the magnetic phase diagram of type-II superconductors by Alexei Alexeyevich Abrikosov. In 1935 Fritz London published a very closely related work on magnetic flux quantization in superconductors. London's fluxoid can also be viewed as a quantum vortex.

Entanglement distillation is the transformation of N copies of an arbitrary entangled state into some number of approximately pure Bell pairs, using only local operations and classical communication.

In quantum mechanics, orbital magnetization, Morb, refers to the magnetization induced by orbital motion of charged particles, usually electrons in solids. The term "orbital" distinguishes it from the contribution of spin degrees of freedom, Mspin, to the total magnetization. A nonzero orbital magnetization requires broken time-reversal symmetry, which can occur spontaneously in ferromagnetic and ferrimagnetic materials, or can be induced in a non-magnetic material by an applied magnetic field.

The Aharonov–Casher effect is a quantum mechanical phenomenon predicted in 1984 by Yakir Aharonov and Aharon Casher, in which a traveling magnetic dipole is affected by an electric field. It is dual to the Aharonov–Bohm effect, in which the quantum phase of a charged particle depends upon which side of a magnetic flux tube it comes through. In the Aharonov–Casher effect, the particle has a magnetic moment and the tubes are charged instead. It was observed in a gravitational neutron interferometer in 1989 and later by fluxon interference of magnetic vortices in Josephson junctions. It has also been seen with electrons and atoms.

<span class="mw-page-title-main">Antisymmetric exchange</span> Contribution to magnetic exchange interaction

In Physics, antisymmetric exchange, also known as the Dzyaloshinskii–Moriya interaction (DMI), is a contribution to the total magnetic exchange interaction between two neighboring magnetic spins, and . Quantitatively, it is a term in the Hamiltonian which can be written as

Linear optical quantum computing or linear optics quantum computation (LOQC) is a paradigm of quantum computation, allowing universal quantum computation. LOQC uses photons as information carriers, mainly uses linear optical elements, or optical instruments to process quantum information, and uses photon detectors and quantum memories to detect and store quantum information.

<span class="mw-page-title-main">Interatomic potential</span> Functions for calculating potential energy

Interatomic potentials are mathematical functions to calculate the potential energy of a system of atoms with given positions in space. Interatomic potentials are widely used as the physical basis of molecular mechanics and molecular dynamics simulations in computational chemistry, computational physics and computational materials science to explain and predict materials properties. Examples of quantitative properties and qualitative phenomena that are explored with interatomic potentials include lattice parameters, surface energies, interfacial energies, adsorption, cohesion, thermal expansion, and elastic and plastic material behavior, as well as chemical reactions.

<span class="mw-page-title-main">Fluctuation X-ray scattering</span>

Fluctuation X-ray scattering (FXS) is an X-ray scattering technique similar to small-angle X-ray scattering (SAXS), but is performed using X-ray exposures below sample rotational diffusion times. This technique, ideally performed with an ultra-bright X-ray light source, such as a free electron laser, results in data containing significantly more information as compared to traditional scattering methods.

The Strictly-Correlated-Electrons (SCE) density functional theory approach, originally proposed by Michael Seidl, is a formulation of density functional theory, alternative to the widely used Kohn-Sham DFT, especially aimed at the study of strongly-correlated systems. The essential difference between the two approaches is the choice of the auxiliary system. In Kohn-Sham DFT this system is composed by non-interacting electrons, for which the kinetic energy can be calculated exactly and the interaction term has to be approximated. In SCE DFT, instead, the starting point is totally the opposite one: the auxiliary system has infinite electronic correlation and zero kinetic energy.

The Peierls substitution method, named after the original work by Rudolf Peierls is a widely employed approximation for describing tightly-bound electrons in the presence of a slowly varying magnetic vector potential.

A fracton is an emergent topological quasiparticle excitation which is immobile when in isolation. Many theoretical systems have been proposed in which fractons exist as elementary excitations. Such systems are known as fracton models. Fractons have been identified in various CSS codes as well as in symmetric tensor gauge theories.

The Diósi–Penrose model was introduced as a possible solution to the measurement problem, where the wave function collapse is related to gravity. The model was first suggested by Lajos Diósi when studying how possible gravitational fluctuations may affect the dynamics of quantum systems. Later, following a different line of reasoning, Roger Penrose arrived at an estimation for the collapse time of a superposition due to gravitational effects, which is the same as that found by Diósi, hence the name Diósi–Penrose model. However, it should be pointed out that while Diósi gave a precise dynamical equation for the collapse, Penrose took a more conservative approach, estimating only the collapse time of a superposition.

The linearized augmented-plane-wave method (LAPW) is an implementation of Kohn-Sham density functional theory (DFT) adapted to periodic materials. It typically goes along with the treatment of both valence and core electrons on the same footing in the context of DFT and the treatment of the full potential and charge density without any shape approximation. This is often referred to as the all-electron full-potential linearized augmented-plane-wave method (FLAPW). It does not rely on the pseudopotential approximation and employs a systematically extendable basis set. These features make it one of the most precise implementations of DFT, applicable to all crystalline materials, regardless of their chemical composition. It can be used as a reference for evaluating other approaches.

References

  1. 1 2 Wannier Gregory H (1937). "The Structure of Electronic Excitation Levels in Insulating Crystals". Physical Review. 52 (3): 191–197. Bibcode:1937PhRv...52..191W. doi:10.1103/PhysRev.52.191.
  2. Wannier, Gregory H. (1 September 1962). "Dynamics of Band Electrons in Electric and Magnetic Fields". Reviews of Modern Physics. American Physical Society (APS). 34 (4): 645–655. Bibcode:1962RvMP...34..645W. doi:10.1103/revmodphys.34.645. ISSN   0034-6861.
  3. Marzari et al.: An Introduction to Maximally-Localized Wannier Functions
  4. 1 2 A Bohm, A Mostafazadeh, H Koizumi, Q Niu and J Zqanziger (2003). The Geometric Phase in Quantum Systems. Springer. pp. §12.5, p. 292 ff. doi:10.1007/978-3-662-10333-3. ISBN   978-3-540-00031-0.{{cite book}}: CS1 maint: multiple names: authors list (link)
  5. MP Geller and W Kohn Theory of generalized Wannier functions for nearly periodic potentials Physical Review B 48, 1993
  6. W. Kohn (1959). "Analytic Properties of Bloch Waves and Wannier Functions". Physical Review. 115 (4): 809–821. Bibcode:1959PhRv..115..809K. doi:10.1103/PhysRev.115.809.
  7. 1 2 Brouder, Christian; Panati, Gianluca; Calandra, Matteo; Mourougane, Christophe; Marzari, Nicola (25 January 2007). "Exponential Localization of Wannier Functions in Insulators". Physical Review Letters. American Physical Society (APS). 98 (4): 046402. arXiv: cond-mat/0606726 . Bibcode:2007PhRvL..98d6402B. doi:10.1103/physrevlett.98.046402. ISSN   0031-9007. PMID   17358792. S2CID   32812449.
  8. Jónsson Elvar Ö., Lehtola Susi, Puska Martti, Jónsson Hannes (2017). "Theory and Applications of Generalized Pipek–Mezey Wannier Functions". Journal of Chemical Theory and Computation. 13 (2): 460–474. arXiv: 1608.06396 . doi:10.1021/acs.jctc.6b00809. PMID   28099002. S2CID   206612913.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  9. Berghold, Gerd; Mundy, Christopher J.; Romero, Aldo H.; Hutter, Jürg; Parrinello, Michele (15 April 2000). "General and efficient algorithms for obtaining maximally localized Wannier functions". Physical Review B. American Physical Society (APS). 61 (15): 10040–10048. Bibcode:2000PhRvB..6110040B. doi:10.1103/physrevb.61.10040. ISSN   0163-1829.
  10. Nakhmanson, S. M.; Calzolari, A.; Meunier, V.; Bernholc, J.; Buongiorno Nardelli, M. (10 June 2003). "Spontaneous polarization and piezoelectricity in boron nitride nanotubes". Physical Review B. 67 (23): 235406. arXiv: cond-mat/0305329v1 . Bibcode:2003PhRvB..67w5406N. doi:10.1103/physrevb.67.235406. ISSN   0163-1829. S2CID   119345964.
  11. D Vanderbilt Berry phases and Curvatures in Electronic Structure Theory.
  12. C. Pisani (1994). Quantum-mechanical Ab-initio Calculation of the Properties of Crystalline Materials (Proceedings of the IV School of Computational Chemistry of the Italian Chemical Society ed.). Springer. p. 282. ISBN   978-3-540-61645-0.
  13. Yates, Jonathan R.; Wang, Xinjie; Vanderbilt, David; Souza, Ivo (2007-05-21). "Spectral and Fermi surface properties from Wannier interpolation". Physical Review B. American Physical Society (APS). 75 (19): 195121. arXiv: cond-mat/0702554 . Bibcode:2007PhRvB..75s5121Y. doi:10.1103/physrevb.75.195121. ISSN   1098-0121. S2CID   31224663.
  14. Wang, Xinjie; Yates, Jonathan R.; Souza, Ivo; Vanderbilt, David (2006-11-21). "Ab initiocalculation of the anomalous Hall conductivity by Wannier interpolation". Physical Review B. 74 (19): 195118. arXiv: cond-mat/0608257 . Bibcode:2006PhRvB..74s5118W. doi:10.1103/physrevb.74.195118. ISSN   1098-0121. S2CID   30427871.
  15. Lopez, M. G.; Vanderbilt, David; Thonhauser, T.; Souza, Ivo (2012-01-31). "Wannier-based calculation of the orbital magnetization in crystals". Physical Review B. 85 (1): 014435. arXiv: 1112.1938 . Bibcode:2012PhRvB..85a4435L. doi:10.1103/physrevb.85.014435. ISSN   1098-0121. S2CID   44056938.
  16. Pizzi, Giovanni; Volja, Dmitri; Kozinsky, Boris; Fornari, Marco; Marzari, Nicola (2014-01-01). "BoltzWann: A code for the evaluation of thermoelectric and electronic transport properties with a maximally-localized Wannier functions basis". Computer Physics Communications. 185 (1): 422–429. arXiv: 1305.1587 . Bibcode:2014CoPhC.185..422P. doi:10.1016/j.cpc.2013.09.015. ISSN   0010-4655. S2CID   6140858 . Retrieved 2020-07-13.
  17. Tsirkin, Stepan S.; Puente, Pablo Aguado; Souza, Ivo (2018-01-29). "Gyrotropic effects in trigonal tellurium studied from first principles". Physical Review B. 97 (3): 035158. arXiv: 1710.03204 . Bibcode:2018PhRvB..97c5158T. doi:10.1103/physrevb.97.035158. ISSN   2469-9950. S2CID   55517213.
  18. Ibañez-Azpiroz, Julen; Tsirkin, Stepan S.; Souza, Ivo (2018-06-26). "Ab initio calculation of the shift photocurrent by Wannier interpolation". Physical Review B. 97 (24): 245143. arXiv: 1804.04030 . Bibcode:2018PhRvB..97x5143I. doi:10.1103/physrevb.97.245143. ISSN   2469-9950. S2CID   67751414.
  19. Qiao, Junfeng; Zhou, Jiaqi; Yuan, Zhe; Zhao, Weisheng (2018-12-03). "Calculation of intrinsic spin Hall conductivity by Wannier interpolation". Physical Review B. 98 (21): 214402. arXiv: 1810.07637 . Bibcode:2018PhRvB..98u4402Q. doi:10.1103/physrevb.98.214402. ISSN   2469-9950. S2CID   119223848.
  20. Ryoo, Ji Hoon; Park, Cheol-Hwan; Souza, Ivo (2019-06-07). "Computation of intrinsic spin Hall conductivities from first principles using maximally localized Wannier functions". Physical Review B. 99 (23): 235113. arXiv: 1906.07139 . Bibcode:2019PhRvB..99w5113R. doi:10.1103/physrevb.99.235113. ISSN   2469-9950. S2CID   189928182.

Further reading

See also