Localized molecular orbitals

Last updated • 7 min readFrom Wikipedia, The Free Encyclopedia

Localized molecular orbitals are molecular orbitals which are concentrated in a limited spatial region of a molecule, such as a specific bond or lone pair on a specific atom. They can be used to relate molecular orbital calculations to simple bonding theories, and also to speed up post-Hartree–Fock electronic structure calculations by taking advantage of the local nature of electron correlation. Localized orbitals in systems with periodic boundary conditions are known as Wannier functions.

Contents

Standard ab initio quantum chemistry methods lead to delocalized orbitals that, in general, extend over an entire molecule and have the symmetry of the molecule. Localized orbitals may then be found as linear combinations of the delocalized orbitals, given by an appropriate unitary transformation.

In the water molecule for example, ab initio calculations show bonding character primarily in two molecular orbitals, each with electron density equally distributed among the two O-H bonds. The localized orbital corresponding to one O-H bond is the sum of these two delocalized orbitals, and the localized orbital for the other O-H bond is their difference; as per Valence bond theory.

For multiple bonds and lone pairs, different localization procedures give different orbitals. The Boys and Edmiston-Ruedenberg localization methods mix these orbitals to give equivalent bent bonds in ethylene and rabbit ear lone pairs in water, while the Pipek-Mezey method preserves their respective σ and π symmetry.

Equivalence of localized and delocalized orbital descriptions

For molecules with a closed electron shell, in which each molecular orbital is doubly occupied, the localized and delocalized orbital descriptions are in fact equivalent and represent the same physical state. It might seem, again using the example of water, that placing two electrons in the first bond and two other electrons in the second bond is not the same as having four electrons free to move over both bonds. However, in quantum mechanics all electrons are identical and cannot be distinguished as same or other. The total wavefunction must have a form which satisfies the Pauli exclusion principle such as a Slater determinant (or linear combination of Slater determinants), and it can be shown [1] that if two electrons are exchanged, such a function is unchanged by any unitary transformation of the doubly occupied orbitals.

For molecules with an open electron shell, in which some molecular orbitals are singly occupied, the electrons of alpha and beta spin must be localized separately. [2] [3] This applies to radical species such as nitric oxide and dioxygen. Again, in this case the localized and delocalized orbital descriptions are equivalent and represent the same physical state.

Computation methods

Localized molecular orbitals (LMO) [4] are obtained by unitary transformation upon a set of canonical molecular orbitals (CMO). The transformation usually involves the optimization (either minimization or maximization) of the expectation value of a specific operator. The generic form of the localization potential is:

,

where is the localization operator and is a molecular spatial orbital. Many methodologies have been developed during the past decades, differing in the form of .

The optimization of the objective function is usually performed using pairwise Jacobi rotations. [5] However, this approach is prone to saddle point convergence (if it even converges), and thus other approaches have also been developed, from simple conjugate gradient methods with exact line searches, [6] to Newton-Raphson [7] and trust-region methods. [8]

Foster-Boys

The Foster-Boys (also known as Boys) localization method [9] minimizes the spatial extent of the orbitals by minimizing , where . This turns out to be equivalent [10] [11] to the easier task of maximizing . In one dimension, the Foster-Boys (FB) objective function can also be written as

. [12]

Fourth moment

The fourth moment (FM) procedure [12] is analogous to Foster-Boys scheme, however the orbital fourth moment is used instead of the orbital second moment. The objective function to be minimized is

.

The fourth moment method produces more localized virtual orbitals than Foster-Boys method, [12] since it implies a larger penalty on the delocalized tails. For graphene (a delocalized system), the fourth moment method produces more localized occupied orbitals than Foster-Boys and Pipek-Mezey schemes. [12]

Edmiston-Ruedenberg

Edmiston-Ruedenberg localization [5] maximizes the electronic self-repulsion energy by maximizing , where .

Pipek-Mezey

Pipek-Mezey localization [13] takes a slightly different approach, maximizing the sum of orbital-dependent partial charges on the nuclei:

.

Pipek and Mezey originally used Mulliken charges, which are mathematically ill defined. Recently, Pipek-Mezey style schemes based on a variety of mathematically well-defined partial charge estimates have been discussed. [14] Some notable choices are Voronoi charges, [14] Becke charges, [14] Hirshfeld or Stockholder charges, [14] intrinsic atomic orbital charges (see intrinsic bond orbitals)", [15] Bader charges, [16] or "fuzzy atom" charges. [17] Rather surprisingly, despite the wide variation in the (total) partial charges reproduced by the different estimates, analysis of the resulting Pipek-Mezey orbitals has shown that the localized orbitals are rather insensitive to the partial charge estimation scheme used in the localization process. [14] However, due to the ill-defined mathematical nature of Mulliken charges (and Löwdin charges, which have also been used in some works [18] ), as better alternatives are nowadays available it is advisable to use them in favor of the original version.

The most important quality of the Pipek-Mezey scheme is that it preserves σ-π separation in planar systems, which sets it apart from the Foster-Boys and Edmiston-Ruedenberg schemes that mix σ and π bonds. This property holds independent of the partial charge estimate used. [13] [14] [15] [16] [17]

While the usual formulation of the Pipek-Mezey method invokes an iterative procedure to localize the orbitals, a non-iterative method has also been recently suggested. [19]

In organic chemistry

A list of localized molecular orbitals considered in organic chemistry, showing component atomic orbitals and all shapes of the MOs they constitute. In reality, AOs and MOs, as obtained from computations, are much "fatter" than depicted in these cartoons. Localized MOs.png
A list of localized molecular orbitals considered in organic chemistry, showing component atomic orbitals and all shapes of the MOs they constitute. In reality, AOs and MOs, as obtained from computations, are much "fatter" than depicted in these cartoons.

Organic chemistry is often discussed in terms of localized molecular orbitals in a qualitative and informal sense. Historically, much of classical organic chemistry was built on the older valence bond / orbital hybridization models of bonding. To account for phenomena like aromaticity, this simple model of bonding is supplemented by semi-quantitative results from Hückel molecular orbital theory. However, the understanding of stereoelectronic effects requires the analysis of interactions between donor and acceptor orbitals between two molecules or different regions within the same molecule, and molecular orbitals must be considered. Because proper (symmetry-adapted) molecular orbitals are fully delocalized and do not admit a ready correspondence with the "bonds" of the molecule, as visualized by the practicing chemist, the most common approach is to instead consider the interaction between filled and unfilled localized molecular orbitals that correspond to σ bonds, π bonds, lone pairs, and their unoccupied counterparts. These orbitals and typically given the notation σ (sigma bonding), π (pi bonding), n (occupied nonbonding orbital, "lone pair"), p (unoccupied nonbonding orbital, "empty p orbital"; the symbol n* for unoccupied nonbonding orbital is seldom used), π* (pi antibonding), and σ* (sigma antibonding). (Woodward and Hoffmann use ω for nonbonding orbitals in general, occupied or unoccupied.) When comparing localized molecular orbitals derived from the same atomic orbitals, these classes generally follow the order σ < π < n < p (n*) < π* < σ* when ranked by increasing energy. [20]

The localized molecular orbitals that organic chemists often depict can be thought of as qualitative renderings of orbitals generated by the computational methods described above. However, they do not map onto any single approach, nor are they used consistently. For instance, the lone pairs of water are usually treated as two equivalent spx hybrid orbitals, while the corresponding "nonbonding" orbitals of carbenes are generally treated as a filled σ(out) orbital and an unfilled pure p orbital, even though the lone pairs of water could be described analogously by filled σ(out) and p orbitals (for further discussion, see the article on lone pair and the discussion above on sigma-pi and equivalent-orbital models). In other words, the type of localized orbital invoked depends on context and considerations of convenience and utility.

Related Research Articles

<span class="mw-page-title-main">Covalent bond</span> Chemical bond by sharing of electron pairs

A covalent bond is a chemical bond that involves the sharing of electrons to form electron pairs between atoms. These electron pairs are known as shared pairs or bonding pairs. The stable balance of attractive and repulsive forces between atoms, when they share electrons, is known as covalent bonding. For many molecules, the sharing of electrons allows each atom to attain the equivalent of a full valence shell, corresponding to a stable electronic configuration. In organic chemistry, covalent bonding is much more common than ionic bonding.

<span class="mw-page-title-main">Molecular orbital</span> Wave-like behavior of an electron in a molecule

In chemistry, a molecular orbital is a mathematical function describing the location and wave-like behavior of an electron in a molecule. This function can be used to calculate chemical and physical properties such as the probability of finding an electron in any specific region. The terms atomic orbital and molecular orbital were introduced by Robert S. Mulliken in 1932 to mean one-electron orbital wave functions. At an elementary level, they are used to describe the region of space in which a function has a significant amplitude.

<span class="mw-page-title-main">Conjugated system</span> System of connected p-orbitals with delocalized electrons in a molecule

In theoretical chemistry, a conjugated system is a system of connected p-orbitals with delocalized electrons in a molecule, which in general lowers the overall energy of the molecule and increases stability. It is conventionally represented as having alternating single and multiple bonds. Lone pairs, radicals or carbenium ions may be part of the system, which may be cyclic, acyclic, linear or mixed. The term "conjugated" was coined in 1899 by the German chemist Johannes Thiele.

Coupled cluster (CC) is a numerical technique used for describing many-body systems. Its most common use is as one of several post-Hartree–Fock ab initio quantum chemistry methods in the field of computational chemistry, but it is also used in nuclear physics. Coupled cluster essentially takes the basic Hartree–Fock molecular orbital method and constructs multi-electron wavefunctions using the exponential cluster operator to account for electron correlation. Some of the most accurate calculations for small to medium-sized molecules use this method.

In computational physics and chemistry, the Hartree–Fock (HF) method is a method of approximation for the determination of the wave function and the energy of a quantum many-body system in a stationary state.

In chemistry, molecular orbital theory is a method for describing the electronic structure of molecules using quantum mechanics. It was proposed early in the 20th century.

Møller–Plesset perturbation theory (MP) is one of several quantum chemistry post-Hartree–Fock ab initio methods in the field of computational chemistry. It improves on the Hartree–Fock method by adding electron correlation effects by means of Rayleigh–Schrödinger perturbation theory (RS-PT), usually to second (MP2), third (MP3) or fourth (MP4) order. Its main idea was published as early as 1934 by Christian Møller and Milton S. Plesset.

Modern valence bond theory is the application of valence bond theory (VBT) with computer programs that are competitive in accuracy and economy with programs for the Hartree–Fock or post-Hartree-Fock methods. The latter methods dominated quantum chemistry from the advent of digital computers because they were easier to program. The early popularity of valence bond methods thus declined. It is only recently that the programming of valence bond methods has improved. These developments are due to and described by Gerratt, Cooper, Karadakov and Raimondi (1997); Li and McWeeny (2002); Joop H. van Lenthe and co-workers (2002); Song, Mo, Zhang and Wu (2005); and Shaik and Hiberty (2004)

In solid-state physics, the tight-binding model is an approach to the calculation of electronic band structure using an approximate set of wave functions based upon superposition of wave functions for isolated atoms located at each atomic site. The method is closely related to the LCAO method used in chemistry. Tight-binding models are applied to a wide variety of solids. The model gives good qualitative results in many cases and can be combined with other models that give better results where the tight-binding model fails. Though the tight-binding model is a one-electron model, the model also provides a basis for more advanced calculations like the calculation of surface states and application to various kinds of many-body problem and quasiparticle calculations.

The Hückel method or Hückel molecular orbital theory, proposed by Erich Hückel in 1930, is a simple method for calculating molecular orbitals as linear combinations of atomic orbitals. The theory predicts the molecular orbitals for π-electrons in π-delocalized molecules, such as ethylene, benzene, butadiene, and pyridine. It provides the theoretical basis for Hückel's rule that cyclic, planar molecules or ions with π-electrons are aromatic. It was later extended to conjugated molecules such as pyridine, pyrrole and furan that contain atoms other than carbon and hydrogen (heteroatoms). A more dramatic extension of the method to include σ-electrons, known as the extended Hückel method (EHM), was developed by Roald Hoffmann. The extended Hückel method gives some degree of quantitative accuracy for organic molecules in general and was used to provide computational justification for the Woodward–Hoffmann rules. To distinguish the original approach from Hoffmann's extension, the Hückel method is also known as the simple Hückel method (SHM).

Zero differential overlap is an approximation in computational molecular orbital theory that is the central technique of semi-empirical methods in quantum chemistry. When computers were first used to calculate bonding in molecules, it was only possible to calculate diatomic molecules. As computers advanced, it became possible to study larger molecules, but the use of this approximation has always allowed the study of even larger molecules. Currently semi-empirical methods can be applied to molecules as large as whole proteins. The approximation involves ignoring certain integrals, usually two-electron repulsion integrals. If the number of orbitals used in the calculation is N, the number of two-electron repulsion integrals scales as N4. After the approximation is applied the number of such integrals scales as N2, a much smaller number, simplifying the calculation.

In chemistry and physics, the exchange interaction or exchange force is a quantum mechanical effect that only occurs between identical particles.

A molecular orbital diagram, or MO diagram, is a qualitative descriptive tool explaining chemical bonding in molecules in terms of molecular orbital theory in general and the linear combination of atomic orbitals (LCAO) method in particular. A fundamental principle of these theories is that as atoms bond to form molecules, a certain number of atomic orbitals combine to form the same number of molecular orbitals, although the electrons involved may be redistributed among the orbitals. This tool is very well suited for simple diatomic molecules such as dihydrogen, dioxygen, and carbon monoxide but becomes more complex when discussing even comparatively simple polyatomic molecules, such as methane. MO diagrams can explain why some molecules exist and others do not. They can also predict bond strength, as well as the electronic transitions that can take place.

Within computational chemistry, the Slater–Condon rules express integrals of one- and two-body operators over wavefunctions constructed as Slater determinants of orthonormal orbitals in terms of the individual orbitals. In doing so, the original integrals involving N-electron wavefunctions are reduced to sums over integrals involving at most two molecular orbitals, or in other words, the original 3N dimensional integral is expressed in terms of many three- and six-dimensional integrals.

In quantum chemistry, a natural bond orbital or NBO is a calculated bonding orbital with maximum electron density. The NBOs are one of a sequence of natural localized orbital sets that include "natural atomic orbitals" (NAO), "natural hybrid orbitals" (NHO), "natural bonding orbitals" (NBO) and "natural (semi-)localized molecular orbitals" (NLMO). These natural localized sets are intermediate between basis atomic orbitals (AO) and molecular orbitals (MO):

In physics, the total position-spread (TPS) tensor is a quantity originally introduced in the modern theory of electrical conductivity. In the case of molecular systems, this tensor measures the fluctuation of the electrons around their mean positions, which corresponds to the delocalization of the electronic charge within a molecular system. The total position-spread can discriminate between metals and insulators taking information from the ground state wave function. This quantity can be very useful as an indicator to characterize Intervalence charge transfer processes, the bond nature of molecules, and Metal–insulator transition.

In theoretical chemistry, the bonding orbital is used in molecular orbital (MO) theory to describe the attractive interactions between the atomic orbitals of two or more atoms in a molecule. In MO theory, electrons are portrayed to move in waves. When more than one of these waves come close together, the in-phase combination of these waves produces an interaction that leads to a species that is greatly stabilized. The result of the waves’ constructive interference causes the density of the electrons to be found within the binding region, creating a stable bond between the two species.

In modern valence bond (VB) theory calculations, Chirgwin–Coulson weights are the relative weights of a set of possible VB structures of a molecule. Related methods of finding the relative weights of valence bond structures are the Löwdin and the inverse weights.

Intrinsic bond orbitals (IBO) are localized molecular orbitals giving exact and non-empirical representations of wave functions. They are obtained by unitary transformation and form an orthogonal set of orbitals localized on a minimal number of atoms. IBOs present an intuitive and unbiased interpretation of chemical bonding with naturally arising Lewis structures. For this reason IBOs have been successfully employed for the elucidation of molecular structures and electron flow along the intrinsic reaction coordinate (IRC). IBOs have also found application as Wannier functions in the study of solids.

Oxidation state localized orbitals (OSLOs) is a new concept used to determine the oxidation states of each fragment for the coordination complexes. Based on the result of density functional theory (DFT), all the occupied molecular orbitals are remixed to get the oxidation state localized orbitals. These orbitals are assigned to one of the fragments in this molecule based on the fragment orbital localization index (FOLI). After all the electrons are assigned, the oxidation states of each fragment could be obtained by calculating the difference between the number of electrons and protons in each fragment.

References

  1. Levine I.N., “Quantum Chemistry” (4th ed., Prentice-Hall 1991) sec.15.8
  2. Hirst, D. M.; Linington, Mary E. (1970). "Localized orbitals for the oxygen and nitric oxide molecules". Theoretica Chimica Acta. 16 (1): 55–62. doi:10.1007/BF01045967. S2CID   95235964.
  3. Duke, Brian J. (1987). "Linnett's double quartet theory and localised orbitals". Journal of Molecular Structure: THEOCHEM. 152 (3–4): 319–330. doi:10.1016/0166-1280(87)80072-6.
  4. Jensen, Frank (2007). Introduction to Computational Chemistry . Chichester, England: John Wiley and Sons. pp.  304–308. ISBN   978-0-470-01187-4.
  5. 1 2 Edmiston, Clyde; Ruedenberg, Klaus (1963). "Localized Atomic and Molecular Orbitals". Reviews of Modern Physics. 35 (3): 457–465. Bibcode:1963RvMP...35..457E. doi:10.1103/RevModPhys.35.457.
  6. Lehtola, Susi; Jónsson, Hannes (2013). "Unitary Optimization of Localized Molecular Orbitals". Journal of Chemical Theory and Computation. 9 (12): 5365–5372. doi:10.1021/ct400793q. PMID   26592274.
  7. Leonard, Joseph M.; Luken, William L. (1982). "Quadratically Convergent Calculation of Localized Molecular Orbitals". Theoretica Chimica Acta. 62 (2): 107–132. doi:10.1007/BF00581477. S2CID   97499582.
  8. Høyvik, Ida-Marie; Jansik, Branislav; Jørgensen, Poul (2012). "Trust Region Minimization of Orbital Localization Functions". Journal of Chemical Theory and Computation. 8 (9): 3137–3146. doi:10.1021/ct300473g. PMID   26605725.
  9. Boys, S. F. (1960). "Construction of Molecular orbitals to be minimally variant for changes from one molecule to another". Reviews of Modern Physics. 32 (2): 296–299. Bibcode:1960RvMP...32..296B. doi:10.1103/RevModPhys.32.300.
  10. Kleier, Daniel; J. Chem. Phys. 61, 3905 (1974) (1974). "Localized molecular orbitals for polyatomic molecules. I. A comparison of the Edmiston-Ruedenberg and Boys localization methods". The Journal of Chemical Physics. Journal of Chemical Physics. 61 (10): 3905–3919. Bibcode:1974JChPh..61.3905K. doi:10.1063/1.1681683.{{cite journal}}: CS1 maint: numeric names: authors list (link)
  11. Introduction to Computational Chemistry by Frank Jensen 1999, page 228 equation 9.27
  12. 1 2 3 4 Høyvik, Ida-Marie; Jansik, Branislav; Jørgensen, Poul (2012). "Orbital localization using fourth central moment minimization" (PDF). Journal of Chemical Physics. 137 (22): 244114. Bibcode:2012JChPh.137v4114H. doi:10.1063/1.4769866. PMID   23248994.
  13. 1 2 Pipek, János; Mezey, Paul G. (1989). "A fast intrinsic localization procedure applicable for ab initio and semiempirical linear combination of atomic orbital wave functions". The Journal of Chemical Physics. 90 (9): 4916. Bibcode:1989JChPh..90.4916P. doi:10.1063/1.456588.
  14. 1 2 3 4 5 6 Lehtola, Susi; Jónsson, Hannes (8 January 2014). "Pipek–Mezey orbital localization using various partial charge estimates". Journal of Chemical Theory and Computation. 10 (2): 642–649. doi:10.1021/ct401016x. PMID   26580041.
  15. 1 2 Knizia, G. (2013). "Intrinsic Atomic Orbitals: An Unbiased Bridge between Quantum Theory and Chemical Concepts". Journal of Chemical Theory and Computation. 9 (11): 4834–4843. arXiv: 1306.6884 . Bibcode:2013arXiv1306.6884K. doi:10.1021/ct400687b. PMID   26583402. S2CID   17717923.
  16. 1 2 Cioslowski, J. (1991). "Partitioning of the orbital overlap matrix and the localization criteria". Journal of Mathematical Chemistry. 8 (1): 169–178. doi:10.1007/BF01166933. S2CID   96731740.
  17. 1 2 Alcoba, Diego R.; Lain, Luis; Torre, Alicia; Bochicchio, Roberto C. (15 April 2006). "An orbital localization criterion based on the theory of "fuzzy" atoms". Journal of Computational Chemistry. 27 (5): 596–608. doi:10.1002/jcc.20373. hdl: 11336/74084 . PMID   16470667. S2CID   3659974.
  18. Høyvik, Ida-Marie; Jansik, Branislav; Jørgensen, Poul (3 April 2013). "Pipek–Mezey localization of occupied and virtual orbitals". Journal of Computational Chemistry. 34 (17): 1456–1462. doi:10.1002/jcc.23281. PMID   23553349. S2CID   2219961.
  19. Heßelmann, Andreas (10 May 2016). "Local Molecular Orbitals from a Projection onto Localized Centers". Journal of Chemical Theory and Computation. 12 (6): 2720–2741. doi:10.1021/acs.jctc.6b00321. PMID   27164445.
  20. Kirby, A. J. (2002). Stereoelectronic Effects. Oxford, UK: Oxford University Press. ISBN   978-0198558934.