Separable partial differential equation

Last updated

A separable partial differential equation is one that can be broken into a set of separate equations of lower dimensionality (fewer independent variables) by a method of separation of variables. This generally relies upon the problem having some special form or symmetry. In this way, the partial differential equation (PDE) can be solved by solving a set of simpler PDEs, or even ordinary differential equations (ODEs) if the problem can be broken down into one-dimensional equations.

The most common form of separation of variables is simple separation of variables in which a solution is obtained by assuming a solution of the form given by a product of functions of each individual coordinate. There is a special form of separation of variables called -separation of variables which is accomplished by writing the solution as a particular fixed function of the coordinates multiplied by a product of functions of each individual coordinate. Laplace's equation on is an example of a partial differential equation which admits solutions through -separation of variables; in the three-dimensional case this uses 6-sphere coordinates.

(This should not be confused with the case of a separable ODE, which refers to a somewhat different class of problems that can be broken into a pair of integrals; see separation of variables.)

Example

For example, consider the time-independent Schrödinger equation

for the function (in dimensionless units, for simplicity). (Equivalently, consider the inhomogeneous Helmholtz equation.) If the function in three dimensions is of the form

then it turns out that the problem can be separated into three one-dimensional ODEs for functions , , and , and the final solution can be written as . (More generally, the separable cases of the Schrödinger equation were enumerated by Eisenhart in 1948. [1] )

Related Research Articles

Wave equation Second-order linear differential equation important in physics

The wave equation is a second-order linear partial differential equation for the description of waves—as they occur in classical physics—such as mechanical waves or light waves. It arises in fields like acoustics, electromagnetics, and fluid dynamics. Due to the fact that the second order wave equation describes the superposition of an incoming wave and an outgoing wave it is also called "Two-way wave equation".

Laplaces equation Second order partial differential equation

In mathematics and physics, Laplace's equation is a second-order partial differential equation named after Pierre-Simon Laplace, who first studied its properties. This is often written as

Dirac equation Relativistic quantum mechanical wave equation

In particle physics, the Dirac equation is a relativistic wave equation derived by British physicist Paul Dirac in 1928. In its free form, or including electromagnetic interactions, it describes all spin-12 massive particles such as electrons and quarks for which parity is a symmetry. It is consistent with both the principles of quantum mechanics and the theory of special relativity, and was the first theory to account fully for special relativity in the context of quantum mechanics. It was validated by accounting for the fine details of the hydrogen spectrum in a completely rigorous way.

Partial differential equation Type of multivariable function

In mathematics, a partial differential equation (PDE) is an equation which imposes relations between the various partial derivatives of a multivariable function.

Schrödinger equation Linear partial differential equation whose solution describes the quantum-mechanical system.

The Schrödinger equation is a linear partial differential equation that governs the wave function of a quantum-mechanical system. It is a key result in quantum mechanics, and its discovery was a significant landmark in the development of the subject. The equation is named after Erwin Schrödinger, who postulated the equation in 1925, and published it in 1926, forming the basis for the work that resulted in his Nobel Prize in Physics in 1933.

In quantum chemistry and molecular physics, the Born–Oppenheimer (BO) approximation is the best known mathematical approximation in molecular dynamics. Specifically, it is the assumption that the wave functions of atomic nuclei and electrons in a molecule can be treated separately, based on the fact that the nuclei are much heavier than the electrons. The approach is named after Max Born and J. Robert Oppenheimer who proposed it in 1927, in the early period of quantum mechanics.

Wave function Mathematical description of the quantum state of a system

A wave function in quantum physics is a mathematical description of the quantum state of an isolated quantum system. The wave function is a complex-valued probability amplitude, and the probabilities for the possible results of measurements made on the system can be derived from it. The most common symbols for a wave function are the Greek letters ψ and Ψ.

Heat equation Type of partial differential equation

In mathematics and physics, the heat equation is a certain partial differential equation. Solutions of the heat equation are sometimes known as caloric functions. The theory of the heat equation was first developed by Joseph Fourier in 1822 for the purpose of modeling how a quantity such as heat diffuses through a given region.

Eigenfunction Mathematical function of a linear operator

In mathematics, an eigenfunction of a linear operator D defined on some function space is any non-zero function f in that space that, when acted upon by D, is only multiplied by some scaling factor called an eigenvalue. As an equation, this condition can be written as

Separation of variables Technique for solving differential equations

In mathematics, separation of variables is any of several methods for solving ordinary and partial differential equations, in which algebra allows one to rewrite an equation so that each of two variables occurs on a different side of the equation.

Method of characteristics Technique for solving hyperbolic partial differential equations

In mathematics, the method of characteristics is a technique for solving partial differential equations. Typically, it applies to first-order equations, although more generally the method of characteristics is valid for any hyperbolic partial differential equation. The method is to reduce a partial differential equation to a family of ordinary differential equations along which the solution can be integrated from some initial data given on a suitable hypersurface.

The Schrödinger–Newton equation, sometimes referred to as the Newton–Schrödinger or Schrödinger–Poisson equation, is a nonlinear modification of the Schrödinger equation with a Newtonian gravitational potential, where the gravitational potential emerges from the treatment of the wave function as a mass density, including a term that represents interaction of a particle with its own gravitational field. The inclusion of a self-interaction term represents a fundamental alteration of quantum mechanics. It can be written either as a single integro-differential equation or as a coupled system of a Schrödinger and a Poisson equation. In the latter case it is also referred to in the plural form.

In quantum mechanics, the momentum operator is the operator associated with the linear momentum. The momentum operator is, in the position representation, an example of a differential operator. For the case of one particle in one spatial dimension, the definition is:

In mathematics, the inverse scattering transform is a method for solving some non-linear partial differential equations. The method is a non-linear analogue, and in some sense generalization, of the Fourier transform, which itself is applied to solve many linear partial differential equations. The name "inverse scattering method" comes from the key idea of recovering the time evolution of a potential from the time evolution of its scattering data: inverse scattering refers to the problem of recovering a potential from its scattering matrix, as opposed to the direct scattering problem of finding the scattering matrix from the potential.

In quantum mechanics, energy is defined in terms of the energy operator, acting on the wave function of the system as a consequence of time translation symmetry.

This is a glossary for the terminology often encountered in undergraduate quantum mechanics courses.

In mathematics, the Novikov–Veselov equation is a natural (2+1)-dimensional analogue of the Korteweg–de Vries (KdV) equation. Unlike another (2+1)-dimensional analogue of KdV, the Kadomtsev–Petviashvili equation, it is integrable via the inverse scattering transform for the 2-dimensional stationary Schrödinger equation. Similarly, the Korteweg–de Vries equation is integrable via the inverse scattering transform for the 1-dimensional Schrödinger equation. The equation is named after S.P. Novikov and A.P. Veselov who published it in Novikov & Veselov (1984).

The solution to the Schrödinger equation, the wavefunction, describes the quantum mechanical properties of a particle on microscopic scales. Measurable quantities such as position, momentum and energy are all derived from the wavefunction.

The Gausson is a soliton which is the solution of the logarithmic Schrödinger equation, which describes a quantum particle in a possible nonlinear quantum mechanics. The logarithmic Schrödinger equation preserves the dimensional homogeneity of the equation, i.e. the product of the independent solutions in one dimension remain the solution in multiple dimensions. While the nonlinearity alone cannot cause the quantum entanglement between dimensions, the logarithmic Schrödinger equation can be solved by the separation of variables.

References

  1. Eisenhart, L. P. (1948-07-01). "Enumeration of Potentials for Which One-Particle Schroedinger Equations Are Separable". Physical Review. American Physical Society (APS). 74 (1): 87–89. doi:10.1103/physrev.74.87. ISSN   0031-899X.