In statistical mechanics and mathematics, the Bethe lattice (also called a regular tree) is an infinite symmetric regular tree where all vertices have the same number of neighbors. The Bethe lattice was introduced into the physics literature by Hans Bethe in 1935. In such a graph, each node is connected to z neighbors; the number z is called either the coordination number or the degree, depending on the field.
Due to its distinctive topological structure, the statistical mechanics of lattice models on this graph are often easier to solve than on other lattices. The solutions are related to the often used Bethe ansatz for these systems.
When working with the Bethe lattice, it is often convenient to mark a given vertex as the root, to be used as a reference point when considering local properties of the graph.
Once a vertex is marked as the root, we can group the other vertices into layers based on their distance from the root. The number of vertices at a distance from the root is , as each vertex other than the root is adjacent to vertices at a distance one greater from the root, and the root is adjacent to vertices at a distance 1.
The Bethe lattice is of interest in statistical mechanics mainly because lattice models on the Bethe lattice are often easier to solve than on other lattices, such as the two-dimensional square lattice. This is because the lack of cycles removes some of the more complicated interactions. While the Bethe lattice does not as closely approximate the interactions in physical materials as other lattices, it can still provide useful insight.
The Ising model is a mathematical model of ferromagnetism, in which the magnetic properties of a material are represented by a "spin" at each node in the lattice, which is either +1 or -1. The model is also equipped with a constant representing the strength of the interaction between adjacent nodes, and a constant representing an external magnetic field.
The Ising model on the Bethe lattice is defined by the partition function
In order to compute the local magnetization, we can break the lattice up into several identical parts by removing a vertex. This gives us a recurrence relation which allows us to compute the magnetization of a Cayley tree with n shells (the finite analog to the Bethe lattice) as
where and the values of satisfy the recurrence relation
In the case when the system is ferromagnetic, the above sequence converges, so we may take the limit to evaluate the magnetization on the Bethe lattice. We get
where x is a solution to .
There are either 1 or 3 solutions to this equation. In the case where there are 3, the sequence will converge to the smallest when and the largest when .
The free energy f at each site of the lattice in the Ising Model is given by
,
where and is as before. [1]
The probability that a random walk on a Bethe lattice of degree starting at a given vertex eventually returns to that vertex is given by . To show this, let be the probability of returning to our starting point if we are a distance away. We have the recurrence relation
for all , as at each location other than the starting vertex there are edges going away from the starting vertex and 1 edge going towards it. Summing this equation over all , we get
.
We have , as this indicates that we have just returned to the starting vertex, so , which is the value we want.
Note that this in stark contrast to the case of random walks on the two-dimensional square lattice, which famously has a return probability of 1. [2] Such a lattice is 4-regular, but the 4-regular Bethe lattice has a return probability of 1/3.
One can easily bound the number of closed walks of length starting at a given vertex of the Bethe Lattice with degree from below. By considering each step as either an outward step (away from the starting vertex) or an inward step (toward the starting vertex), we see that any closed walk of length must have exactly outward steps and inward steps. We also may not have taken more inward steps than outward steps at any point, so the number of sequences of step directions (either inward or outward) is given by the th Catalan number . There are at least choices for each outward step, and always exactly 1 choice for each inward step, so the number of closed walks is at least .
This bound is not tight, as there are actually choices for an outward step from the starting vertex, which happens at the beginning and any number of times during the walk. The exact number of walks is trickier to compute, and is given by the formula
where is the Gauss hypergeometric function. [3]
We may use this fact to bound the second largest eigenvalue of a -regular graph. Let be a -regular graph with vertices, and let be its adjacency matrix. Then is the number of closed walks of length . The number of closed walks on is at least times the number of closed walks on the Bethe lattice with degree starting at a particular vertex, as we can map the walks on the Bethe lattice to the walks on that start at a given vertex and only go back on paths that were already tread. There are often more walks on , as we can make use of cycles to create additional walks. The largest eigenvalue of is , and letting be the second largest absolute value of an eigenvalue, we have
This gives . Noting that as grows, we can let grow much faster than to see that there are only finitely many -regular graphs for which the second largest absolute value of an eigenvalue is at most , for any This is a rather interesting result in the study of (n,d,λ)-graphs.
A Bethe graph of even coordination number 2n is isomorphic to the unoriented Cayley graph of a free group of rank n with respect to a free generating set.
Bethe lattices also occur as the discrete subgroups of certain hyperbolic Lie groups, such as the Fuchsian groups. As such, they are also lattices in the sense of a lattice in a Lie group.
The vertices and edges of an order- apeirogonal tiling of the hyperbolic plane form a Bethe lattice of degree . [4]
In graph theory, an expander graph is a sparse graph that has strong connectivity properties, quantified using vertex, edge or spectral expansion. Expander constructions have spawned research in pure and applied mathematics, with several applications to complexity theory, design of robust computer networks, and the theory of error-correcting codes.
In theoretical physics, a Feynman diagram is a pictorial representation of the mathematical expressions describing the behavior and interaction of subatomic particles. The scheme is named after American physicist Richard Feynman, who introduced the diagrams in 1948.
The Ising model, named after the physicists Ernst Ising and Wilhelm Lenz, is a mathematical model of ferromagnetism in statistical mechanics. The model consists of discrete variables that represent magnetic dipole moments of atomic "spins" that can be in one of two states. The spins are arranged in a graph, usually a lattice, allowing each spin to interact with its neighbors. Neighboring spins that agree have a lower energy than those that disagree; the system tends to the lowest energy but heat disturbs this tendency, thus creating the possibility of different structural phases. The model allows the identification of phase transitions as a simplified model of reality. The two-dimensional square-lattice Ising model is one of the simplest statistical models to show a phase transition.
In mathematics, a Cayley graph, also known as a Cayley color graph, Cayley diagram, group diagram, or color group, is a graph that encodes the abstract structure of a group. Its definition is suggested by Cayley's theorem, and uses a specified set of generators for the group. It is a central tool in combinatorial and geometric group theory. The structure and symmetry of Cayley graphs makes them particularly good candidates for constructing expander graphs.
Virial coefficients appear as coefficients in the virial expansion of the pressure of a many-particle system in powers of the density, providing systematic corrections to the ideal gas law. They are characteristic of the interaction potential between the particles and in general depend on the temperature. The second virial coefficient depends only on the pair interaction between the particles, the third depends on 2- and non-additive 3-body interactions, and so on.
In mathematics, a vertex operator algebra (VOA) is an algebraic structure that plays an important role in two-dimensional conformal field theory and string theory. In addition to physical applications, vertex operator algebras have proven useful in purely mathematical contexts such as monstrous moonshine and the geometric Langlands correspondence.
In graph theory, a strongly regular graph (SRG) is a regular graph G = (V, E) with v vertices and degree k such that for some given integers
In graph theory and network analysis, indicators of centrality assign numbers or rankings to nodes within a graph corresponding to their network position. Applications include identifying the most influential person(s) in a social network, key infrastructure nodes in the Internet or urban networks, super-spreaders of disease, and brain networks. Centrality concepts were first developed in social network analysis, and many of the terms used to measure centrality reflect their sociological origin.
The quantum Heisenberg model, developed by Werner Heisenberg, is a statistical mechanical model used in the study of critical points and phase transitions of magnetic systems, in which the spins of the magnetic systems are treated quantum mechanically. It is related to the prototypical Ising model, where at each site of a lattice, a spin represents a microscopic magnetic dipole to which the magnetic moment is either up or down. Except the coupling between magnetic dipole moments, there is also a multipolar version of Heisenberg model called the multipolar exchange interaction.
In statistical mechanics, the two-dimensional square lattice Ising model is a simple lattice model of interacting magnetic spins. The model is notable for having nontrivial interactions, yet having an analytical solution. The model was solved by Lars Onsager for the special case that the external magnetic field H = 0. An analytical solution for the general case for has yet to be found.
In graph theory, a graph is said to be a pseudorandom graph if it obeys certain properties that random graphs obey with high probability. There is no concrete definition of graph pseudorandomness, but there are many reasonable characterizations of pseudorandomness one can consider.
The expander mixing lemma intuitively states that the edges of certain -regular graphs are evenly distributed throughout the graph. In particular, the number of edges between two vertex subsets and is always close to the expected number of edges between them in a random -regular graph, namely .
In the mathematical discipline of graph theory, the expander walk sampling theorem intuitively states that sampling vertices in an expander graph by doing relatively short random walk can simulate sampling the vertices independently from a uniform distribution. The earliest version of this theorem is due to Ajtai, Komlós & Szemerédi (1987), and the more general version is typically attributed to Gillman (1998).
In the mathematical field of graph theory, the Erdős–Rényi model refers to one of two closely related models for generating random graphs or the evolution of a random network. These models are named after Hungarian mathematicians Paul Erdős and Alfréd Rényi, who introduced one of the models in 1959. Edgar Gilbert introduced the other model contemporaneously with and independently of Erdős and Rényi. In the model of Erdős and Rényi, all graphs on a fixed vertex set with a fixed number of edges are equally likely. In the model introduced by Gilbert, also called the Erdős–Rényi–Gilbert model, each edge has a fixed probability of being present or absent, independently of the other edges. These models can be used in the probabilistic method to prove the existence of graphs satisfying various properties, or to provide a rigorous definition of what it means for a property to hold for almost all graphs.
In statistical mechanics, the eight-vertex model is a generalization of the ice-type (six-vertex) models. It was discussed by Sutherland and Fan & Wu, and solved by Rodney Baxter in the zero-field case.
In extremal graph theory, the forbidden subgraph problem is the following problem: given a graph , find the maximal number of edges an -vertex graph can have such that it does not have a subgraph isomorphic to . In this context, is called a forbidden subgraph.
In the geometry of numbers, the Klein polyhedron, named after Felix Klein, is used to generalize the concept of simple continued fractions to higher dimensions.
Maximal entropy random walk (MERW) is a popular type of biased random walk on a graph, in which transition probabilities are chosen accordingly to the principle of maximum entropy, which says that the probability distribution which best represents the current state of knowledge is the one with largest entropy. While standard random walk chooses for every vertex uniform probability distribution among its outgoing edges, locally maximizing entropy rate, MERW maximizes it globally by assuming uniform probability distribution among all paths in a given graph.
Sidorenko's conjecture is a major conjecture in the field of extremal graph theory, posed by Alexander Sidorenko in 1986. Roughly speaking, the conjecture states that for any bipartite graph and graph on vertices with average degree , there are at least labeled copies of in , up to a small error term. Formally, it provides an intuitive inequality about graph homomorphism densities in graphons. The conjectured inequality can be interpreted as a statement that the density of copies of in a graph is asymptotically minimized by a random graph, as one would expect a fraction of possible subgraphs to be a copy of if each edge exists with probability .
In spectral graph theory, the Alon–Boppana bound provides a lower bound on the second-largest eigenvalue of the adjacency matrix of a -regular graph, meaning a graph in which every vertex has degree . The reason for the interest in the second-largest eigenvalue is that the largest eigenvalue is guaranteed to be due to -regularity, with the all-ones vector being the associated eigenvector. The graphs that come close to meeting this bound are Ramanujan graphs, which are examples of the best possible expander graphs.