This article needs additional citations for verification .(December 2009) |
In the renormalization group analysis of phase transitions in physics, a critical dimension is the dimensionality of space at which the character of the phase transition changes. Below the lower critical dimension there is no phase transition. Above the upper critical dimension the critical exponents of the theory become the same as that in mean field theory. An elegant criterion to obtain the critical dimension within mean field theory is due to V. Ginzburg.
Since the renormalization group sets up a relation between a phase transition and a quantum field theory, this has implications for the latter and for our larger understanding of renormalization in general. Above the upper critical dimension, the quantum field theory which belongs to the model of the phase transition is a free field theory. Below the lower critical dimension, there is no field theory corresponding to the model.
In the context of string theory the meaning is more restricted: the critical dimension is the dimension at which string theory is consistent assuming a constant dilaton background without additional confounding permutations from background radiation effects. The precise number may be determined by the required cancellation of conformal anomaly on the worldsheet; it is 26 for the bosonic string theory and 10 for superstring theory.
Determining the upper critical dimension of a field theory is a matter of linear algebra. It is worthwhile to formalize the procedure because it yields the lowest-order approximation for scaling and essential input for the renormalization group. It also reveals conditions to have a critical model in the first place.
A Lagrangian may be written as a sum of terms, each consisting of an integral over a monomial of coordinates and fields . Examples are the standard -model and the isotropic Lifshitz tricritical point with Lagrangians
see also the figure on the right. This simple structure may be compatible with a scale invariance under a rescaling of the coordinates and fields with a factor according to
Time is not singled out here — it is just another coordinate: if the Lagrangian contains a time variable then this variable is to be rescaled as with some constant exponent . The goal is to determine the exponent set .
One exponent, say , may be chosen arbitrarily, for example . In the language of dimensional analysis this means that the exponents count wave vector factors (a reciprocal length ). Each monomial of the Lagrangian thus leads to a homogeneous linear equation for the exponents . If there are (inequivalent) coordinates and fields in the Lagrangian, then such equations constitute a square matrix. If this matrix were invertible then there only would be the trivial solution .
The condition for a nontrivial solution gives an equation between the space dimensions, and this determines the upper critical dimension (provided there is only one variable dimension in the Lagrangian). A redefinition of the coordinates and fields now shows that determining the scaling exponents is equivalent to a dimensional analysis with respect to the wavevector , with all coupling constants occurring in the Lagrangian rendered dimensionless. Dimensionless coupling constants are the technical hallmark for the upper critical dimension.
Naive scaling at the level of the Lagrangian does not directly correspond to physical scaling because a cutoff is required to give a meaning to the field theory and the path integral. Changing the length scale also changes the number of degrees of freedom. This complication is taken into account by the renormalization group. The main result at the upper critical dimension is that scale invariance remains valid for large factors , but with additional factors in the scaling of the coordinates and fields.
What happens below or above depends on whether one is interested in long distances (statistical field theory) or short distances (quantum field theory). Quantum field theories are trivial (convergent) below and not renormalizable above . [1] Statistical field theories are trivial (convergent) above and renormalizable below . In the latter case there arise "anomalous" contributions to the naive scaling exponents . These anomalous contributions to the effective critical exponents vanish at the upper critical dimension.
It is instructive to see how the scale invariance at the upper critical dimension becomes a scale invariance below this dimension. For small external wave vectors the vertex functions acquire additional exponents, for example . If these exponents are inserted into a matrix (which only has values in the first column) the condition for scale invariance becomes . This equation only can be satisfied if the anomalous exponents of the vertex functions cooperate in some way. In fact, the vertex functions depend on each other hierarchically. One way to express this interdependence are the Schwinger–Dyson equations.
Naive scaling at thus is important as zeroth order approximation. Naive scaling at the upper critical dimension also classifies terms of the Lagrangian as relevant, irrelevant or marginal. A Lagrangian is compatible with scaling if the - and -exponents lie on a hyperplane, for examples see the figure above. is a normal vector of this hyperplane.
The lower critical dimension of a phase transition of a given universality class is the last dimension for which this phase transition does not occur if the dimension is increased starting with .
Thermodynamic stability of an ordered phase depends on entropy and energy. Quantitatively this depends on the type of domain walls and their fluctuation modes. There appears to be no generic formal way for deriving the lower critical dimension of a field theory. Lower bounds may be derived with statistical mechanics arguments.
Consider first a one-dimensional system with short range interactions. Creating a domain wall requires a fixed energy amount . Extracting this energy from other degrees of freedom decreases entropy by . This entropy change must be compared with the entropy of the domain wall itself. [2] In a system of length there are positions for the domain wall, leading (according to Boltzmann's principle) to an entropy gain . For nonzero temperature and large enough the entropy gain always dominates, and thus there is no phase transition in one-dimensional systems with short-range interactions at . Space dimension thus is a lower bound for the lower critical dimension of such systems.
A stronger lower bound can be derived with the help of similar arguments for systems with short range interactions and an order parameter with a continuous symmetry. In this case the Mermin–Wagner Theorem states that the order parameter expectation value vanishes in at , and there thus is no phase transition of the usual type at and below.
For systems with quenched disorder a criterion given by Imry and Ma [3] might be relevant. These authors used the criterion to determine the lower critical dimension of random field magnets.
In theoretical physics, a Feynman diagram is a pictorial representation of the mathematical expressions describing the behavior and interaction of subatomic particles. The scheme is named after American physicist Richard Feynman, who introduced the diagrams in 1948. The interaction of subatomic particles can be complex and difficult to understand; Feynman diagrams give a simple visualization of what would otherwise be an arcane and abstract formula. According to David Kaiser, "Since the middle of the 20th century, theoretical physicists have increasingly turned to this tool to help them undertake critical calculations. Feynman diagrams have revolutionized nearly every aspect of theoretical physics." While the diagrams are applied primarily to quantum field theory, they can also be used in other areas of physics, such as solid-state theory. Frank Wilczek wrote that the calculations that won him the 2004 Nobel Prize in Physics "would have been literally unthinkable without Feynman diagrams, as would [Wilczek's] calculations that established a route to production and observation of the Higgs particle."
In theoretical physics, quantum field theory (QFT) is a theoretical framework that combines classical field theory, special relativity, and quantum mechanics. QFT is used in particle physics to construct physical models of subatomic particles and in condensed matter physics to construct models of quasiparticles. The current standard model of particle physics is based on quantum field theory.
In theoretical physics, the term renormalization group (RG) refers to a formal apparatus that allows systematic investigation of the changes of a physical system as viewed at different scales. In particle physics, it reflects the changes in the underlying force laws as the energy scale at which physical processes occur varies, energy/momentum and resolution distance scales being effectively conjugate under the uncertainty principle.
A conformal field theory (CFT) is a quantum field theory that is invariant under conformal transformations. In two dimensions, there is an infinite-dimensional algebra of local conformal transformations, and conformal field theories can sometimes be exactly solved or classified.
In physics, critical phenomena is the collective name associated with the physics of critical points. Most of them stem from the divergence of the correlation length, but also the dynamics slows down. Critical phenomena include scaling relations among different quantities, power-law divergences of some quantities described by critical exponents, universality, fractal behaviour, and ergodicity breaking. Critical phenomena take place in second order phase transitions, although not exclusively.
In physics, mathematics and statistics, scale invariance is a feature of objects or laws that do not change if scales of length, energy, or other variables, are multiplied by a common factor, and thus represent a universality.
The classical XY model is a lattice model of statistical mechanics. In general, the XY model can be seen as a specialization of Stanley's n-vector model for n = 2.
In quantum field theory, a quartic interaction is a type of self-interaction in a scalar field. Other types of quartic interactions may be found under the topic of four-fermion interactions. A classical free scalar field satisfies the Klein–Gordon equation. If a scalar field is denoted , a quartic interaction is represented by adding a potential energy term to the Lagrangian density. The coupling constant is dimensionless in 4-dimensional spacetime.
The Berezinskii–Kosterlitz–Thouless (BKT) transition is a phase transition of the two-dimensional (2-D) XY model in statistical physics. It is a transition from bound vortex-antivortex pairs at low temperatures to unpaired vortices and anti-vortices at some critical temperature. The transition is named for condensed matter physicists Vadim Berezinskii, John M. Kosterlitz and David J. Thouless. BKT transitions can be found in several 2-D systems in condensed matter physics that are approximated by the XY model, including Josephson junction arrays and thin disordered superconducting granular films. More recently, the term has been applied by the 2-D superconductor insulator transition community to the pinning of Cooper pairs in the insulating regime, due to similarities with the original vortex BKT transition.
Critical exponents describe the behavior of physical quantities near continuous phase transitions. It is believed, though not proven, that they are universal, i.e. they do not depend on the details of the physical system, but only on some of its general features. For instance, for ferromagnetic systems at thermal equilibrium, the critical exponents depend only on:
String cosmology is a relatively new field that tries to apply equations of string theory to solve the questions of early cosmology. A related area of study is brane cosmology.
In physics, the gauge covariant derivative is a means of expressing how fields vary from place to place, in a way that respects how the coordinate systems used to describe a physical phenomenon can themselves change from place to place. The gauge covariant derivative is used in many areas of physics, including quantum field theory and fluid dynamics and in a very special way general relativity.
In theoretical physics, scalar field theory can refer to a relativistically invariant classical or quantum theory of scalar fields. A scalar field is invariant under any Lorentz transformation.
In theoretical physics, the BRST formalism, or BRST quantization denotes a relatively rigorous mathematical approach to quantizing a field theory with a gauge symmetry. Quantization rules in earlier quantum field theory (QFT) frameworks resembled "prescriptions" or "heuristics" more than proofs, especially in non-abelian QFT, where the use of "ghost fields" with superficially bizarre properties is almost unavoidable for technical reasons related to renormalization and anomaly cancellation.
A polymer field theory is a statistical field theory describing the statistical behavior of a neutral or charged polymer system. It can be derived by transforming the partition function from its standard many-dimensional integral representation over the particle degrees of freedom in a functional integral representation over an auxiliary field function, using either the Hubbard–Stratonovich transformation or the delta-functional transformation. Computer simulations based on polymer field theories have been shown to deliver useful results, for example to calculate the structures and properties of polymer solutions, polymer melts and thermoplastics.
In physics, a gauge theory is a type of field theory in which the Lagrangian, and hence the dynamics of the system itself, do not change under local transformations according to certain smooth families of operations. Formally, the Lagrangian is invariant under these transformations.
This article lists the critical exponents of the ferromagnetic transition in the Ising model. In statistical physics, the Ising model is the simplest system exhibiting a continuous phase transition with a scalar order parameter and symmetry. The critical exponents of the transition are universal values and characterize the singular properties of physical quantities. The ferromagnetic transition of the Ising model establishes an important universality class, which contains a variety of phase transitions as different as ferromagnetism close to the Curie point and critical opalescence of liquid near its critical point.
Asymptotic safety is a concept in quantum field theory which aims at finding a consistent and predictive quantum theory of the gravitational field. Its key ingredient is a nontrivial fixed point of the theory's renormalization group flow which controls the behavior of the coupling constants in the ultraviolet (UV) regime and renders physical quantities safe from divergences. Although originally proposed by Steven Weinberg to find a theory of quantum gravity, the idea of a nontrivial fixed point providing a possible UV completion can be applied also to other field theories, in particular to perturbatively nonrenormalizable ones. In this respect, it is similar to quantum triviality.
Supersymmetric theory of stochastic dynamics or stochastics (STS) is an exact theory of stochastic (partial) differential equations (SDEs), the class of mathematical models with the widest applicability covering, in particular, all continuous time dynamical systems, with and without noise. The main utility of the theory from the physical point of view is a rigorous theoretical explanation of the ubiquitous spontaneous long-range dynamical behavior that manifests itself across disciplines via such phenomena as 1/f, flicker, and crackling noises and the power-law statistics, or Zipf's law, of instantonic processes like earthquakes and neuroavalanches. From the mathematical point of view, STS is interesting because it bridges the two major parts of mathematical physics – the dynamical systems theory and topological field theories. Besides these and related disciplines such as algebraic topology and supersymmetric field theories, STS is also connected with the traditional theory of stochastic differential equations and the theory of pseudo-Hermitian operators.
In mathematics and theoretical physics, and especially gauge theory, the deformed Hermitian Yang–Mills (dHYM) equation is a differential equation describing the equations of motion for a D-brane in the B-model of string theory. The equation was derived by Mariño-Minasian-Moore-Strominger in the case of Abelian gauge group, and by Leung–Yau–Zaslow using mirror symmetry from the corresponding equations of motion for D-branes in the A-model of string theory.