Cube root

Last updated

In mathematics, a cube root of a number x is a number y such that y3 = x. All nonzero real numbers have exactly one real cube root and a pair of complex conjugate cube roots, and all nonzero complex numbers have three distinct complex cube roots. For example, the real cube root of 8, denoted , is 2, because 23 = 8, while the other cube roots of 8 are and . The three cube roots of −27i are:

Contents


In some contexts, particularly when the number whose cube root is to be taken is a real number, one of the cube roots (in this particular case the real one) is referred to as the principal cube root, denoted with the radical sign The cube root is the inverse function of the cube function if considering only real numbers, but not if considering also complex numbers: although one has always the cube of a nonzero number has more than one complex cube root and its principal cube root may not be the number that was cubed. For example, , but

Plot of y = [?]x. The plot is symmetric with respect to origin, as it is an odd function. At x = 0 this graph has a vertical tangent. Cube-root function.svg
Plot of y = x. The plot is symmetric with respect to origin, as it is an odd function. At x = 0 this graph has a vertical tangent.
A unit cube (side = 1) and a cube with twice the volume (side = [?]2 = 1.2599... OEIS: A002580). Cube and doubled cube.svg
A unit cube (side = 1) and a cube with twice the volume (side = 2 = 1.2599... OEIS:  A002580 ).

Formal definition

The cube roots of a number x are the numbers y which satisfy the equation

Properties

Real numbers

For any real number x, there is one real number y such that y3 = x. The cube function is increasing, so does not give the same result for two different inputs, and it covers all real numbers. In other words, it is a bijection, or one-to-one. Then we can define an inverse function that is also one-to-one. For real numbers, we can define a unique cube root of all real numbers. If this definition is used, the cube root of a negative number is a negative number.

The three cube roots of 1 3rd roots of unity.svg
The three cube roots of 1

If x and y are allowed to be complex, then there are three solutions (if x is non-zero) and so x has three cube roots. A real number has one real cube root and two further cube roots which form a complex conjugate pair. For instance, the cube roots of 1 are:

The last two of these roots lead to a relationship between all roots of any real or complex number. If a number is one cube root of a particular real or complex number, the other two cube roots can be found by multiplying that cube root by one or the other of the two complex cube roots of 1.

Complex numbers

Plot of the complex cube root together with its two additional leaves. The first image shows the main branch, which is described in the text. Complex cube root.jpg
Plot of the complex cube root together with its two additional leaves. The first image shows the main branch, which is described in the text.
Riemann surface of the cube root. One can see how all three leaves fit together. Riemann surface cube root.svg
Riemann surface of the cube root. One can see how all three leaves fit together.

For complex numbers, the principal cube root is usually defined as the cube root that has the greatest real part, or, equivalently, the cube root whose argument has the least absolute value. It is related to the principal value of the natural logarithm by the formula

If we write x as

where r is a non-negative real number and θ lies in the range

,

then the principal complex cube root is

This means that in polar coordinates, we are taking the cube root of the radius and dividing the polar angle by three in order to define a cube root. With this definition, the principal cube root of a negative number is a complex number, and for instance 3−8 will not be −2, but rather 1 + i3.

This difficulty can also be solved by considering the cube root as a multivalued function: if we write the original complex number x in three equivalent forms, namely

Geometric representation of the 2nd to 6th roots of a complex number z, in polar form re where r = |z | and ph = arg z. If z is real, ph = 0 or p. Principal roots are shown in black. Visualisation complex number roots.svg
Geometric representation of the 2nd to 6th roots of a complex number z, in polar form re where r = |z| and φ = arg z. If z is real, φ = 0 or π. Principal roots are shown in black.

The principal complex cube roots of these three forms are then respectively

Unless x = 0, these three complex numbers are distinct, even though the three representations of x were equivalent. For example, 3−8 may then be calculated to be −2, 1 + i3, or 1 − i3.

This is related with the concept of monodromy: if one follows by continuity the function cube root along a closed path around zero, after a turn the value of the cube root is multiplied (or divided) by

Impossibility of compass-and-straightedge construction

Cube roots arise in the problem of finding an angle whose measure is one third that of a given angle (angle trisection) and in the problem of finding the edge of a cube whose volume is twice that of a cube with a given edge (doubling the cube). In 1837 Pierre Wantzel proved that neither of these can be done with a compass-and-straightedge construction.

Numerical methods

Newton's method is an iterative method that can be used to calculate the cube root. For real floating-point numbers this method reduces to the following iterative algorithm to produce successively better approximations of the cube root of a:

The method is simply averaging three factors chosen such that

at each iteration.

Halley's method improves upon this with an algorithm that converges more quickly with each iteration, albeit with more work per iteration:

This converges cubically, so two iterations do as much work as three iterations of Newton's method. Each iteration of Newton's method costs two multiplications, one addition and one division, assuming that 1/3a is precomputed, so three iterations plus the precomputation require seven multiplications, three additions, and three divisions.

Each iteration of Halley's method requires three multiplications, three additions, and one division, [1] so two iterations cost six multiplications, six additions, and two divisions. Thus, Halley's method has the potential to be faster if one division is more expensive than three additions.

With either method a poor initial approximation of x0 can give very poor algorithm performance, and coming up with a good initial approximation is somewhat of a black art. Some implementations manipulate the exponent bits of the floating-point number; i.e. they arrive at an initial approximation by dividing the exponent by 3. [1]

Also useful is this generalized continued fraction, based on the nth root method:

If x is a good first approximation to the cube root of a and y = ax3, then:

The second equation combines each pair of fractions from the first into a single fraction, thus doubling the speed of convergence.

Appearance in solutions of third and fourth degree equations

Cubic equations, which are polynomial equations of the third degree (meaning the highest power of the unknown is 3) can always be solved for their three solutions in terms of cube roots and square roots (although simpler expressions only in terms of square roots exist for all three solutions, if at least one of them is a rational number). If two of the solutions are complex numbers, then all three solution expressions involve the real cube root of a real number, while if all three solutions are real numbers then they may be expressed in terms of the complex cube root of a complex number.

Quartic equations can also be solved in terms of cube roots and square roots.

History

The calculation of cube roots can be traced back to Babylonian mathematicians from as early as 1800 BCE. [2] In the fourth century BCE Plato posed the problem of doubling the cube, which required a compass-and-straightedge construction of the edge of a cube with twice the volume of a given cube; this required the construction, now known to be impossible, of the length 32.

A method for extracting cube roots appears in The Nine Chapters on the Mathematical Art , a Chinese mathematical text compiled around the second century BCE and commented on by Liu Hui in the third century CE. [3] The Greek mathematician Hero of Alexandria devised a method for calculating cube roots in the first century CE. His formula is again mentioned by Eutokios in a commentary on Archimedes. [4] In 499 CE Aryabhata, a mathematician-astronomer from the classical age of Indian mathematics and Indian astronomy, gave a method for finding the cube root of numbers having many digits in the Aryabhatiya (section 2.5). [5]

See also

Related Research Articles

<span class="mw-page-title-main">Complex number</span> Number with a real and an imaginary part

In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted i, called the imaginary unit and satisfying the equation ; every complex number can be expressed in the form , where a and b are real numbers. Because no real number satisfies the above equation, i was called an imaginary number by René Descartes. For the complex number ,a is called the real part, and b is called the imaginary part. The set of complex numbers is denoted by either of the symbols or C. Despite the historical nomenclature, "imaginary" complex numbers have a mathematical existence as firm as that of the real numbers, and they are fundamental tools in the scientific description of the natural world.

<span class="mw-page-title-main">Constructible number</span> Number constructible via compass and straightedge

In geometry and algebra, a real number is constructible if and only if, given a line segment of unit length, a line segment of length can be constructed with compass and straightedge in a finite number of steps. Equivalently, is constructible if and only if there is a closed-form expression for using only integers and the operations for addition, subtraction, multiplication, division, and square roots.

<span class="mw-page-title-main">Euler's formula</span> Complex exponential in terms of sine and cosine

Euler's formula, named after Leonhard Euler, is a mathematical formula in complex analysis that establishes the fundamental relationship between the trigonometric functions and the complex exponential function. Euler's formula states that, for any real number x, one has

<span class="mw-page-title-main">Exponential function</span> Mathematical function, denoted exp(x) or e^x

The exponential function is a mathematical function denoted by or . Unless otherwise specified, the term generally refers to the positive-valued function of a real variable, although it can be extended to the complex numbers or generalized to other mathematical objects like matrices or Lie algebras. The exponential function originated from the operation of taking powers of a number, but various modern definitions allow it to be rigorously extended to all real arguments , including irrational numbers. Its ubiquitous occurrence in pure and applied mathematics led mathematician Walter Rudin to consider the exponential function to be "the most important function in mathematics".

<span class="mw-page-title-main">Natural logarithm</span> Logarithm to the base of the mathematical constant e

The natural logarithm of a number is its logarithm to the base of the mathematical constant e, which is an irrational and transcendental number approximately equal to 2.718281828459. The natural logarithm of x is generally written as ln x, logex, or sometimes, if the base e is implicit, simply log x. Parentheses are sometimes added for clarity, giving ln(x), loge(x), or log(x). This is done particularly when the argument to the logarithm is not a single symbol, so as to prevent ambiguity.

In algebra, a quadratic equation is any equation that can be rearranged in standard form as

<span class="mw-page-title-main">Square root</span> Number whose square is a given number

In mathematics, a square root of a number x is a number y such that ; in other words, a number y whose square is x. For example, 4 and −4 are square roots of 16 because .

<span class="mw-page-title-main">Trigonometric functions</span> Functions of an angle

In mathematics, the trigonometric functions are real functions which relate an angle of a right-angled triangle to ratios of two side lengths. They are widely used in all sciences that are related to geometry, such as navigation, solid mechanics, celestial mechanics, geodesy, and many others. They are among the simplest periodic functions, and as such are also widely used for studying periodic phenomena through Fourier analysis.

<span class="mw-page-title-main">Imaginary unit</span> Principal square root of −1

The imaginary unit or unit imaginary number is a solution to the quadratic equation x2 + 1 = 0. Although there is no real number with this property, i can be used to extend the real numbers to what are called complex numbers, using addition and multiplication. A simple example of the use of i in a complex number is 2 + 3i.

<span class="mw-page-title-main">Exponentiation</span> Arithmetic operation

In mathematics, exponentiation is an operation involving two numbers: the base and the exponent or power. Exponentiation is written as bn, where b is the base and n is the power; this is pronounced as "b (raised) to the n". When n is a positive integer, exponentiation corresponds to repeated multiplication of the base: that is, bn is the product of multiplying n bases:

<span class="mw-page-title-main">Cubic equation</span> Polynomial equation of degree 3

In algebra, a cubic equation in one variable is an equation of the form

In mathematics, taking the nth root is an operation involving two numbers, the radicand and the index or degree. Taking the nth root is written as , where x is the radicand and n is the index. This is pronounced as "the nth root of x". The definition then of an nth root of a number x is a number r which, when raised to the power of the positive integer n, yields x:

<span class="mw-page-title-main">Cubic function</span> Polynomial function of degree 3

In mathematics, a cubic function is a function of the form that is, a polynomial function of degree three. In many texts, the coefficientsa, b, c, and d are supposed to be real numbers, and the function is considered as a real function that maps real numbers to real numbers or as a complex function that maps complex numbers to complex numbers. In other cases, the coefficients may be complex numbers, and the function is a complex function that has the set of the complex numbers as its codomain, even when the domain is restricted to the real numbers.

<span class="mw-page-title-main">Inverse trigonometric functions</span> Inverse functions of sin, cos, tan, etc.

In mathematics, the inverse trigonometric functions are the inverse functions of the trigonometric functions. Specifically, they are the inverses of the sine, cosine, tangent, cotangent, secant, and cosecant functions, and are used to obtain an angle from any of the angle's trigonometric ratios. Inverse trigonometric functions are widely used in engineering, navigation, physics, and geometry.

<span class="mw-page-title-main">Tetration</span> Arithmetic operation

In mathematics, tetration is an operation based on iterated, or repeated, exponentiation. There is no standard notation for tetration, though and the left-exponent xb are common.

In algebra, a nested radical is a radical expression that contains (nests) another radical expression. Examples include

Methods of computing square roots are algorithms for approximating the non-negative square root of a positive real number . Since all square roots of natural numbers, other than of perfect squares, are irrational, square roots can usually only be computed to some finite precision: these methods typically construct a series of increasingly accurate approximations.

<span class="mw-page-title-main">Newton fractal</span> Boundary set in the complex plane

The Newton fractal is a boundary set in the complex plane which is characterized by Newton's method applied to a fixed polynomial p(z) ∈ [z] or transcendental function. It is the Julia set of the meromorphic function zzp(z)/p′(z) which is given by Newton's method. When there are no attractive cycles (of order greater than 1), it divides the complex plane into regions Gk, each of which is associated with a root ζk of the polynomial, k = 1, …, deg(p). In this way the Newton fractal is similar to the Mandelbrot set, and like other fractals it exhibits an intricate appearance arising from a simple description. It is relevant to numerical analysis because it shows that (outside the region of quadratic convergence) the Newton method can be very sensitive to its choice of start point.

In mathematics, an infinite periodic continued fraction is a continued fraction that can be placed in the form

In algebra, casus irreducibilis is one of the cases that may arise in solving polynomials of degree 3 or higher with integer coefficients algebraically, i.e., by obtaining roots that are expressed with radicals. It shows that many algebraic numbers are real-valued but cannot be expressed in radicals without introducing complex numbers. The most notable occurrence of casus irreducibilis is in the case of cubic polynomials that have three real roots, which was proven by Pierre Wantzel in 1843. One can see whether a given cubic polynomial is in so-called casus irreducibilis by looking at the discriminant, via Cardano's formula.

References

  1. 1 2 "In Search of a Fast Cube Root". metamerist.com. 2008. Archived from the original on 27 December 2013.
  2. Saggs, H. W. F. (1989). Civilization Before Greece and Rome . Yale University Press. p.  227. ISBN   978-0-300-05031-8.
  3. Crossley, John; W.-C. Lun, Anthony (1999). The Nine Chapters on the Mathematical Art: Companion and Commentary. Oxford University Press. p. 213. ISBN   978-0-19-853936-0.
  4. Smyly, J. Gilbart (1920). "Heron's Formula for Cube Root". Hermathena. 19 (42). Trinity College Dublin: 64–67. JSTOR   23037103.
  5. Aryabhatiya Archived 15 August 2011 at archive.today Marathi : आर्यभटीय, Mohan Apte, Pune, India, Rajhans Publications, 2009, p. 62, ISBN   978-81-7434-480-9