Vertical tangent

Last updated
Vertical tangent on the function f(x) at x = c. Vertical tangent.svg
Vertical tangent on the function ƒ(x) at x=c.

In mathematics, particularly calculus, a vertical tangent is a tangent line that is vertical. Because a vertical line has infinite slope, a function whose graph has a vertical tangent is not differentiable at the point of tangency.

Contents

Limit definition

A function ƒ has a vertical tangent at x=a if the difference quotient used to define the derivative has infinite limit:

The first case corresponds to an upward-sloping vertical tangent, and the second case to a downward-sloping vertical tangent. The graph of ƒ has a vertical tangent at x=a if the derivative of ƒ at a is either positive or negative infinity.

For a continuous function, it is often possible to detect a vertical tangent by taking the limit of the derivative. If

then ƒ must have an upward-sloping vertical tangent at x=a. Similarly, if

then ƒ must have a downward-sloping vertical tangent at x=a. In these situations, the vertical tangent to ƒ appears as a vertical asymptote on the graph of the derivative.

Vertical cusps

Closely related to vertical tangents are vertical cusps . This occurs when the one-sided derivatives are both infinite, but one is positive and the other is negative. For example, if

then the graph of ƒ will have a vertical cusp that slopes up on the left side and down on the right side.

As with vertical tangents, vertical cusps can sometimes be detected for a continuous function by examining the limit of the derivative. For example, if

then the graph of ƒ will have a vertical cusp at x=a that slopes down on the left side and up on the right side. This corresponds to a vertical asymptote on the graph of the derivative that goes to on the left and on the right.

Example

The function

has a vertical tangent at x=0, since it is continuous and

Similarly, the function

has a vertical cusp at x=0, since it is continuous,

and

Related Research Articles

Antiderivative Concept in calculus

In calculus, an antiderivative, inverse derivative, primitive function, primitive integral or indefinite integral of a function f is a differentiable function F whose derivative is equal to the original function f. This can be stated symbolically as F' = f. The process of solving for antiderivatives is called antidifferentiation, and its opposite operation is called differentiation, which is the process of finding a derivative. Antiderivatives are often denoted by capital Roman letters such as F and G.

Asymptote Limit of the tangent line at a point that tends to infinity

In analytic geometry, an asymptote of a curve is a line such that the distance between the curve and the line approaches zero as one or both of the x or y coordinates tends to infinity. In projective geometry and related contexts, an asymptote of a curve is a line which is tangent to the curve at a point at infinity.

Derivative Operation in calculus

In mathematics, the derivative of a function of a real variable measures the sensitivity to change of the function value with respect to a change in its argument. Derivatives are a fundamental tool of calculus. For example, the derivative of the position of a moving object with respect to time is the object's velocity: this measures how quickly the position of the object changes when time advances.

Exponential function Class of specific mathematical functions

The exponential function is a mathematical function denoted by or . It can be defined in several equivalent ways. Its ubiquitous occurrence in pure and applied mathematics has led mathematician W. Rudin to opine that the exponential function is "the most important function in mathematics". Its value at 1, is a mathematical constant called Euler's number.

In complex analysis, an entire function, also called an integral function, is a complex-valued function that is holomorphic on the whole complex plane. Typical examples of entire functions are polynomials and the exponential function, and any finite sums, products and compositions of these, such as the trigonometric functions sine and cosine and their hyperbolic counterparts sinh and cosh, as well as derivatives and integrals of entire functions such as the error function. If an entire function f(z) has a root at w, then f(z) / , taking the limit value at w, is an entire function. On the other hand, neither the natural logarithm nor the square root is an entire function, nor can they be continued analytically to an entire function.

LHôpitals rule Mathematical rule for evaluating certain limits

In mathematics, more specifically calculus, L'Hôpital's rule or L'Hospital's rule, also known as Bernoulli's rule, is a theorem which provides a technique to evaluate limits of indeterminate forms. Application of the rule often converts an indeterminate form to an expression that can be easily evaluated by substitution. The rule is named after the 17th-century French mathematician Guillaume de l'Hôpital. Although the rule is often attributed to L'Hôpital, the theorem was first introduced to him in 1694 by the Swiss mathematician Johann Bernoulli.

Natural logarithm Logarithm to the base of the mathematical constant e

The natural logarithm of a number is its logarithm to the base of the mathematical constant e, which is an irrational and transcendental number approximately equal to 2.718281828459. The natural logarithm of x is generally written as ln x, logex, or sometimes, if the base e is implicit, simply log x. Parentheses are sometimes added for clarity, giving ln(x), loge(x), or log(x). This is done particularly when the argument to the logarithm is not a single symbol, so as to prevent ambiguity.

Tangent In mathematics, straight line touching a plane curve without crossing it

In geometry, the tangent line to a plane curve at a given point is the straight line that "just touches" the curve at that point. Leibniz defined it as the line through a pair of infinitely close points on the curve. More precisely, a straight line is said to be a tangent of a curve y = f(x) at a point x = c if the line passes through the point (c, f ) on the curve and has slope f'(c), where f' is the derivative of f. A similar definition applies to space curves and curves in n-dimensional Euclidean space.

Dirac delta function Pseudo-function δ such that an integral of δ(x-c)f(x) always takes the value of f(c)

In mathematics, the Dirac delta distribution, also known as the unit impulse symbol, is a generalized function or distribution over the real numbers, whose value is zero everywhere except at zero, and whose integral over the entire real line is equal to one.

Differential calculus Area of mathematics; subarea of calculus

In mathematics, differential calculus is a subfield of calculus that studies the rates at which quantities change. It is one of the two traditional divisions of calculus, the other being integral calculus—the study of the area beneath a curve.

In mathematics, a singularity is a point at which a given mathematical object is not defined, or a point where the mathematical object ceases to be well-behaved in some particular way, such as by lacking differentiability or analyticity.

Rolles theorem On stationary points between two equal values of a real differentiable function

In calculus, Rolle's theorem or Rolle's lemma essentially states that any real-valued differentiable function that attains equal values at two distinct points must have at least one stationary point somewhere between them—that is, a point where the first derivative is zero. The theorem is named after Michel Rolle.

Algebraic curve Curve defined as zeros of polynomials

In mathematics, an affine algebraic plane curve is the zero set of a polynomial in two variables. A projective algebraic plane curve is the zero set in a projective plane of a homogeneous polynomial in three variables. An affine algebraic plane curve can be completed in a projective algebraic plane curve by homogenizing its defining polynomial. Conversely, a projective algebraic plane curve of homogeneous equation h(x, y, t) = 0 can be restricted to the affine algebraic plane curve of equation h(x, y, 1) = 0. These two operations are each inverse to the other; therefore, the phrase algebraic plane curve is often used without specifying explicitly whether it is the affine or the projective case that is considered.

Differentiable function Mathematical function whose derivative exists

In mathematics, a differentiable function of one real variable is a function whose derivative exists at each point in its domain. In other words, the graph of a differentiable function has a non-vertical tangent line at each interior point in its domain. A differentiable function is smooth and does not contain any break, angle, or cusp.

In mathematics, smooth functions and analytic functions are two very important types of functions. One can easily prove that any analytic function of a real argument is smooth. The converse is not true, as demonstrated with the counterexample below.

In mathematical analysis, asymptotic analysis, also known as asymptotics, is a method of describing limiting behavior.

In mathematics, Laplace's method, named after Pierre-Simon Laplace, is a technique used to approximate integrals of the form

In integral calculus, the Weierstrass substitution or tangent half-angle substitution is a method for evaluating integrals, which converts a rational function of trigonometric functions of into an ordinary rational function of by setting . No generality is lost by taking these to be rational functions of the sine and cosine. The general transformation formula is

Equation <i>x<sup>y</sup></i> = <i>y<sup>x</sup></i>

In general, exponentiation fails to be commutative. However, the equation holds in special cases, such as

Most of the terms listed in Wikipedia glossaries are already defined and explained within Wikipedia itself. However, glossaries like this one are useful for looking up, comparing and reviewing large numbers of terms together. You can help enhance this page by adding new terms or writing definitions for existing ones.

References