This is a list of polynomial topics, by Wikipedia page. See also trigonometric polynomial, list of algebraic geometry topics.
In number theory, integer factorization is the decomposition of a composite number into a product of smaller integers. If these factors are further restricted to prime numbers, the process is called prime factorization.
In mathematics, a polynomial is an expression consisting of indeterminates and coefficients, that involves only the operations of addition, subtraction, multiplication, and non-negative integer exponentiation of variables. An example of a polynomial of a single indeterminate x is x2 − 4x + 7. An example in three variables is x3 + 2xyz2 − yz + 1.
In mathematics, factorization or factoring consists of writing a number or another mathematical object as a product of several factors, usually smaller or simpler objects of the same kind. For example, 3 × 5 is a factorization of the integer 15, and (x – 2)(x + 2) is a factorization of the polynomial x2 – 4.
In mathematics and computing, a root-finding algorithm is an algorithm for finding zeros, also called "roots", of continuous functions. A zero of a function f, from the real numbers to real numbers or from the complex numbers to the complex numbers, is a number x such that f(x) = 0. As, generally, the zeros of a function cannot be computed exactly nor expressed in closed form, root-finding algorithms provide approximations to zeros, expressed either as floating-point numbers or as small isolating intervals, or disks for complex roots.
In mathematics, an irreducible polynomial is, roughly speaking, a polynomial that cannot be factored into the product of two non-constant polynomials. The property of irreducibility depends on the nature of the coefficients that are accepted for the possible factors, that is, the field to which the coefficients of the polynomial and its possible factors are supposed to belong. For example, the polynomial x2 − 2 is a polynomial with integer coefficients, but, as every integer is also a real number, it is also a polynomial with real coefficients. It is irreducible if it is considered as a polynomial with integer coefficients, but it factors as if it is considered as a polynomial with real coefficients. One says that the polynomial x2 − 2 is irreducible over the integers but not over the reals.
In mathematics, especially in the field of algebra, a polynomial ring or polynomial algebra is a ring formed from the set of polynomials in one or more indeterminates with coefficients in another ring, often a field.
In mathematics, the Sturm sequence of a univariate polynomial p is a sequence of polynomials associated with p and its derivative by a variant of Euclid's algorithm for polynomials. Sturm's theorem expresses the number of distinct real roots of p located in an interval in terms of the number of changes of signs of the values of the Sturm sequence at the bounds of the interval. Applied to the interval of all the real numbers, it gives the total number of real roots of p.
In mathematics, the resultant of two polynomials is a polynomial expression of their coefficients, which is equal to zero if and only if the polynomials have a common root, or, equivalently, a common factor. In some older texts, the resultant is also called the eliminant.
In mathematics, Descartes' rule of signs, first described by René Descartes in his work La Géométrie, is a technique for getting information on the number of positive real roots of a polynomial. It asserts that the number of positive roots is at most the number of sign changes in the sequence of polynomial's coefficients, and that the difference between these two numbers is always even. This implies, in particular, that if the number of sign changes is zero or one, then there are exactly zero or one positive roots, respectively.
In mathematics and computer algebra, factorization of polynomials or polynomial factorization expresses a polynomial with coefficients in a given field or in the integers as the product of irreducible factors with coefficients in the same domain. Polynomial factorization is one of the fundamental components of computer algebra systems.
In mathematics, a square-free polynomial is a polynomial defined over a field that does not have as a divisor any square of a non-constant polynomial. A univariate polynomial is square free if and only if it has no multiple root in an algebraically closed field containing its coefficients. This motivates that, in applications in physics and engineering, a square-free polynomial is commonly called a polynomial with no repeated roots.
A system of polynomial equations is a set of simultaneous equations f1 = 0, ..., fh = 0 where the fi are polynomials in several variables, say x1, ..., xn, over some field k.
In mathematics, an orthogonal polynomial sequence is a family of polynomials such that any two different polynomials in the sequence are orthogonal to each other under some inner product.
Polynomial matrices are widely studied in the fields of systems theory and control theory and have seen other uses relating to stable polynomials. In stability theory, Spectral Factorization has been used to find determinantal matrix representations for bivariate stable polynomials and real zero polynomials. A key tool used to study these is a matrix factorization known as either the Polynomial Matrix Spectral Factorization or the Matrix Fejer–Riesz Theorem.