Shapiro polynomials

Last updated

In mathematics, the Shapiro polynomials are a sequence of polynomials which were first studied by Harold S. Shapiro in 1951 when considering the magnitude of specific trigonometric sums. [1] In signal processing, the Shapiro polynomials have good autocorrelation properties and their values on the unit circle are small. [2] The first few members of the sequence are:

Contents

where the second sequence, indicated by Q, is said to be complementary to the first sequence, indicated by P.

Construction

The Shapiro polynomials Pn(z) may be constructed from the Golay–Rudin–Shapiro sequence an, which equals 1 if the number of pairs of consecutive ones in the binary expansion of n is even, and 1 otherwise. Thus a0 = 1, a1 = 1, a2 = 1, a3 = 1, etc.

The first Shapiro Pn(z) is the partial sum of order 2n  1 (where n = 0, 1, 2, ...) of the power series

f(z) := a0 + a1z + a2z2 + ...

The Golay–Rudin–Shapiro sequence {an} has a fractal-like structure for example, an = a2n which implies that the subsequence (a0, a2, a4, ...) replicates the original sequence {an}. This in turn leads to remarkable functional equations satisfied by f(z).

The second or complementary Shapiro polynomials Qn(z) may be defined in terms of this sequence, or by the relation Qn(z) = (-1)nz2n-1Pn(-1/z), or by the recursions

Properties

Zeroes of the polynomial of degree 255 Rudin shapiro 8 zeros.svg
Zeroes of the polynomial of degree 255

The sequence of complementary polynomials Qn corresponding to the Pn is uniquely characterized by the following properties:

The most interesting property of the {Pn} is that the absolute value of Pn(z) is bounded on the unit circle by the square root of 2 (n+1), which is on the order of the L2 norm of Pn. Polynomials with coefficients from the set {1, 1} whose maximum modulus on the unit circle is close to their mean modulus are useful for various applications in communication theory (e.g., antenna design and data compression). Property (iii) shows that (P, Q) form a Golay pair.

These polynomials have further properties: [3]

See also

Notes

  1. John Brillhart and L. Carlitz (May 1970). "Note on the Shapiro polynomials". Proceedings of the American Mathematical Society. 25 (1). Proceedings of the American Mathematical Society, Vol. 25, No. 1: 114–118. doi: 10.2307/2036537 . JSTOR   2036537.
  2. Somaini, U. (June 26, 1975). "Binary sequences with good correlation properties". Electronics Letters. 11 (13): 278–279. Bibcode:1975ElL....11..278S. doi:10.1049/el:19750211. Archived from the original on February 26, 2019.
  3. J. Brillhart; J.S. Lomont; P. Morton (1976). "Cyclotomic properties of the Rudin–Shapiro polynomials". J. Reine Angew. Math. 288: 37–65.

Related Research Articles

In mathematics, a finite field or Galois field is a field that contains a finite number of elements. As with any field, a finite field is a set on which the operations of multiplication, addition, subtraction and division are defined and satisfy certain basic rules. The most common examples of finite fields are the integers mod p when p is a prime number.

In algebra, the rational root theorem states a constraint on rational solutions of a polynomial equation with integer coefficients and . Solutions of the equation are also called roots or zeros of the polynomial on the left side.

A simple or regular continued fraction is a continued fraction with numerators all equal one, and denominators built from a sequence of integer numbers. The sequence can be finite or infinite, resulting in a finite continued fraction like

<span class="mw-page-title-main">Floor and ceiling functions</span> Nearest integers from a number

In mathematics, the floor function is the function that takes as input a real number x, and gives as output the greatest integer less than or equal to x, denoted x or floor(x). Similarly, the ceiling function maps x to the least integer greater than or equal to x, denoted x or ceil(x).

<span class="mw-page-title-main">Legendre function</span> Solutions of Legendres differential equation

In physical science and mathematics, the Legendre functionsPλ, Qλ and associated Legendre functionsPμ
λ
, Qμ
λ
, and Legendre functions of the second kind, Qn, are all solutions of Legendre's differential equation. The Legendre polynomials and the associated Legendre polynomials are also solutions of the differential equation in special cases, which, by virtue of being polynomials, have a large number of additional properties, mathematical structure, and applications. For these polynomial solutions, see the separate Wikipedia articles.

In mathematics, a polynomial sequence, i.e., a sequence of polynomials indexed by non-negative integers in which the index of each polynomial equals its degree, is said to be of binomial type if it satisfies the sequence of identities

In mathematics, a Sheffer sequence or poweroid is a polynomial sequence, i.e., a sequence (pn(x) : n = 0, 1, 2, 3, ...) of polynomials in which the index of each polynomial equals its degree, satisfying conditions related to the umbral calculus in combinatorics. They are named for Isador M. Sheffer.

In number theory, a formula for primes is a formula generating the prime numbers, exactly and without exception. Formulas for calculating primes do exist; however, they are computationally very slow. A number of constraints are known, showing what such a "formula" can and cannot be.

In mathematics, and particularly in the field of complex analysis, the Weierstrass factorization theorem asserts that every entire function can be represented as a product involving its zeroes. The theorem may be viewed as an extension of the fundamental theorem of algebra, which asserts that every polynomial may be factored into linear factors, one for each root.

In mathematics and theoretical computer science, an automatic sequence (also called a k-automatic sequence or a k-recognizable sequence when one wants to indicate that the base of the numerals used is k) is an infinite sequence of terms characterized by a finite automaton. The n-th term of an automatic sequence a(n) is a mapping of the final state reached in a finite automaton accepting the digits of the number n in some fixed base k.

In applied mathematics, complementary sequences (CS) are pairs of sequences with the useful property that their out-of-phase aperiodic autocorrelation coefficients sum to zero. Binary complementary sequences were first introduced by Marcel J. E. Golay in 1949. In 1961–1962 Golay gave several methods for constructing sequences of length 2N and gave examples of complementary sequences of lengths 10 and 26. In 1974 R. J. Turyn gave a method for constructing sequences of length mn from sequences of lengths m and n which allows the construction of sequences of any length of the form 2N10K26M.

In mathematics, the secondary measure associated with a measure of positive density ρ when there is one, is a measure of positive density μ, turning the secondary polynomials associated with the orthogonal polynomials for ρ into an orthogonal system.

In mathematics, the Dickson polynomials, denoted Dn(x,α), form a polynomial sequence introduced by L. E. Dickson (1897). They were rediscovered by Brewer (1961) in his study of Brewer sums and have at times, although rarely, been referred to as Brewer polynomials.

<span class="mw-page-title-main">Littlewood polynomial</span>

In mathematics, a Littlewood polynomial is a polynomial all of whose coefficients are +1 or −1. Littlewood's problem asks how large the values of such a polynomial must be on the unit circle in the complex plane. The answer to this would yield information about the autocorrelation of binary sequences. They are named for J. E. Littlewood who studied them in the 1950s.

In mathematics, the Rudin–Shapiro sequence, also known as the Golay–Rudin–Shapiro sequence, is an infinite 2-automatic sequence named after Marcel Golay, Harold S. Shapiro, and Walter Rudin who investigated its properties.

In the mathematical theory of non-standard positional numeral systems, the Komornik–Loreti constant is a mathematical constant that represents the smallest base q for which the number 1 has a unique representation, called its q-development. The constant is named after Vilmos Komornik and Paola Loreti, who defined it in 1998.

In mathematics, the Bateman polynomials are a family Fn of orthogonal polynomials introduced by Bateman. The Bateman–Pasternack polynomials are a generalization introduced by Pasternack (1939).

In mathematics, Ostrowski numeration, named after Alexander Ostrowski, is either of two related numeration systems based on continued fractions: a non-standard positional numeral system for integers and a non-integer representation of real numbers.

In mathematics, a multiplicative sequence or m-sequence is a sequence of polynomials associated with a formal group structure. They have application in the cobordism ring in algebraic topology.

In mathematics, Bhargava's factorial function, or simply Bhargava factorial, is a certain generalization of the factorial function developed by the Fields Medal winning mathematician Manjul Bhargava as part of his thesis in Harvard University in 1996. The Bhargava factorial has the property that many number-theoretic results involving the ordinary factorials remain true even when the factorials are replaced by the Bhargava factorials. Using an arbitrary infinite subset S of the set of integers, Bhargava associated a positive integer with every positive integer k, which he denoted by k !S, with the property that if one takes S = itself, then the integer associated with k, that is k !, would turn out to be the ordinary factorial of k.

References