Choked flow

Last updated

Choked flow is a compressible flow effect. The parameter that becomes "choked" or "limited" is the fluid velocity.

Contents

Choked flow is a fluid dynamic condition associated with the Venturi effect. When a flowing fluid at a given pressure and temperature passes through a constriction (such as the throat of a convergent-divergent nozzle or a valve in a pipe) into a lower pressure environment the fluid velocity increases. At initially subsonic upstream conditions, the conservation of energy principle requires the fluid velocity to increase as it flows through the smaller cross-sectional area of the constriction. At the same time, the venturi effect causes the static pressure, and therefore the density, to decrease at the constriction. Choked flow is a limiting condition where the mass flow will not increase with a further decrease in the downstream pressure environment for a fixed upstream pressure and temperature.

For homogeneous fluids, the physical point at which the choking occurs for adiabatic conditions is when the exit plane velocity is at sonic conditions; i.e., at a Mach number of 1. [1] [2] [3] At choked flow, the mass flow rate can be increased only by increasing the upstream density of the substance.

The choked flow of gases is useful in many engineering applications because the mass flow rate is independent of the downstream pressure, and depends only on the temperature and pressure and hence the density of the gas on the upstream side of the restriction. Under choked conditions, valves and calibrated orifice plates can be used to produce a desired mass flow rate.

Choked flow in liquids

If the fluid is a liquid, a different type of limiting condition (also known as choked flow) occurs when the venturi effect acting on the liquid flow through the restriction causes a decrease of the liquid pressure beyond the restriction to below that of the liquid's vapor pressure at the prevailing liquid temperature. At that point, the liquid will partially flash into bubbles of vapor and the subsequent collapse of the bubbles causes cavitation. Cavitation is quite noisy and can be sufficiently violent to physically damage valves, pipes and associated equipment. In effect, the vapor bubble formation in the restriction prevents the flow from increasing any further. [4] [5]

Mass flow rate of a gas at choked conditions

All gases flow from higher pressure to lower pressure. Choked flow can occur at the change of the cross section in a de Laval nozzle or through an orifice plate. The choked velocity is observed upstream of an orifice or nozzle. The upstream volumetric flow rate is lower than the downstream condition because of the higher upstream density. The choked velocity is a function of the upstream pressure but not the downstream. Although the velocity is constant, the mass flow rate is dependent on the density of the upstream gas, which is a function of the upstream pressure. Flow velocity reaches the speed of sound in the orifice, and it may be termed a sonic orifice.

Choking in change of cross section flow

Assuming ideal gas behavior, steady-state choked flow occurs when the downstream pressure falls below a critical value . That critical value can be calculated from the dimensionless critical pressure ratio equation [6]

,

where is the heat capacity ratio of the gas and where is the total (stagnation) upstream pressure.

For air with a heat capacity ratio , then ; other gases have in the range 1.09 (e.g. butane) to 1.67 (monatomic gases), so the critical pressure ratio varies in the range , which means that, depending on the gas, choked flow usually occurs when the downstream static pressure drops to below 0.487 to 0.587 times the absolute pressure in stagnant upstream source vessel.

When the gas velocity is choked, one can obtain the mass flowrate as a function of the upstream pressure. For isentropic flow Bernoulli's equation should hold:

,

where - is the enthalpy of gas, - molar specific heat at constant pressure, with being the universal gas constant, - absolute temperature. If we neglect the initial gas velocity upstream, we can obtain the ultimate gas velocity as follows:

In a choked flow this velocity happens to coincide exactly with the sonic velocity at the critical cross-section:

,

where is the density at the critical cross-section. We can now obtain the pressure as:

,

taking in account that . Now remember that we have neglected gas velocity upstream, that is pressure at the critical section must be essentially the same or close to the stagnation pressure upstream , and . Finally we obtain:

as an approximate equation for the mass flowrate.

The more precise equation for the choked mass flow rate is: [1] [2] [3]

Where: 
, mass flow rate, in kg/s
, discharge coefficient, dimensionless
,discharge hole cross-sectional area, in m²
, (Heat capacity ratio) of the gas
, specific heat of the gas at constant pressure
,specific heat of the gas at constant volume
,real gas (total) density at total pressure and total temperature , in kg/m³
,absolute upstream total pressure of the gas, in Pa, or kg/m·s²
,absolute upstream total temperature of the gas, in K

The mass flow rate is primarily dependent on the cross-sectional area of the nozzle throat and the upstream pressure , and only weakly dependent on the temperature . The rate does not depend on the downstream pressure at all. All other terms are constants that depend only on the composition of the material in the flow. Although the gas velocity reaches a maximum and becomes choked, the mass flow rate is not choked. The mass flow rate can still be increased if the upstream pressure is increased as this increases the density of the gas entering the orifice.

The value of can be calculated using the below expression:

Where: 
,discharge coefficient through the constriction (dimensionless)
,cross-sectional area of flow constriction (unit length squared)
,mass flow rate of fluid through constriction (unit mass of fluid per unit time)
,density of fluid (unit mass per unit volume)
,pressure drop across constriction (unit force per unit area)

The above equations calculate the steady state mass flow rate for the pressure and temperature existing in the upstream pressure source.

If the gas is being released from a closed high-pressure vessel, the above steady state equations may be used to approximate the initial mass flow rate. Subsequently, the mass flow rate will decrease during the discharge as the source vessel empties and the pressure in the vessel decreases. Calculating the flow rate versus time since the initiation of the discharge is much more complicated, but more accurate.

The technical literature can be very confusing because many authors fail to explain whether they are using the universal gas law constant R which applies to any ideal gas or whether they are using the gas law constant Rs which only applies to a specific individual gas. The relationship between the two constants is Rs = R / M where M is the molecular weight of the gas.

Real gas effects

If the upstream conditions are such that the gas cannot be treated as ideal, there is no closed form equation for evaluating the choked mass flow. Instead, the gas expansion should be calculated by reference to real gas property tables, where the expansion takes place at constant enthalpy.[ citation needed ]

Minimum pressure ratio required for choked flow to occur

The minimum pressure ratios required for choked conditions to occur (when some typical industrial gases are flowing) are presented in Table 1. The ratios were obtained using the criterion that choked flow occurs when the ratio of the absolute upstream pressure to the absolute downstream pressure is equal to or greater than , where is the specific heat ratio of the gas. The minimum pressure ratio may be understood as the ratio between the upstream pressure and the pressure at the nozzle throat when the gas is traveling at Mach 1; if the upstream pressure is too low compared to the downstream pressure, sonic flow cannot occur at the throat.

Table 1
Gas [7] [8] Min. Pu/Pd
for choked flow
Dry air1.400 at 20 °C1.893
Nitrogen1.404 at 15 °C1.895
Oxygen1.400 at 20 °C1.893
Helium1.660 at 20 °C2.049
Hydrogen1.410 at 20 °C1.899
Methane1.3071.837
Propane1.1311.729
Butane1.0961.708
Ammonia1.310 at 15 °C1.838
Chlorine1.3551.866
Sulfur dioxide1.290 at 15 °C1.826
Carbon monoxide1.4041.895
Carbon dioxide1.301.83

Notes:

Venturi nozzles with pressure recovery

The flow through a venturi nozzle achieves a much lower nozzle pressure than downstream pressure. Therefore, the pressure ratio is the comparison between the upstream and nozzle pressure. Therefore, flow through a venturi can reach Mach 1 with a much lower upstream to downstream ratio. [9]

Thin-plate orifices

The flow of real gases through thin-plate orifices never becomes fully choked. The mass flow rate through the orifice continues to increase as the downstream pressure is lowered to a perfect vacuum, though the mass flow rate increases slowly as the downstream pressure is reduced below the critical pressure. [10] Cunningham (1951) first drew attention to the fact that choked flow will not occur across a standard, thin, square-edged orifice. [11] [12]

Vacuum conditions

In the case of upstream air pressure at atmospheric pressure and vacuum conditions downstream of an orifice, both the air velocity and the mass flow rate become choked or limited when sonic velocity is reached through the orifice.

The flow pattern

Figure 1. Flow patterns Flowpatterns.gif
Figure 1. Flow patterns

Figure 1a shows the flow through the nozzle when it is completely subsonic (i.e. the nozzle is not choked). The flow in the chamber accelerates as it converges toward the throat, where it reaches its maximum (subsonic) speed at the throat. The flow then decelerates through the diverging section and exhausts into the ambient as a subsonic jet. Lowering the back pressure, in this state, will increase the flow speed everywhere in the nozzle. [13]

When the back pressure, pb, is lowered enough, the flow speed is Mach 1 at the throat, as in figure 1b. The flow pattern is exactly the same as in subsonic flow, except that the flow speed at the throat has just reached Mach 1. Flow through the nozzle is now choked since further reductions in the back pressure can't move the point of M=1 away from the throat. However, the flow pattern in the diverging section does change as you lower the back pressure further. [13]

As pb is lowered below that needed to just choke the flow, a region of supersonic flow forms just downstream of the throat. Unlike in subsonic flow, the supersonic flow accelerates as it moves away from the throat. This region of supersonic acceleration is terminated by a normal shock wave. The shock wave produces a near-instantaneous deceleration of the flow to subsonic speed. This subsonic flow then decelerates through the remainder of the diverging section and exhausts as a subsonic jet. In this regime if you lower or raise the back pressure you move the shock wave away from (increase the length of supersonic flow in the diverging section before the shock wave) the throat. [13]

If the pb is lowered enough, the shock wave will sit at the nozzle exit (figure 1d). Due to the very long region of acceleration (the entire nozzle length) the flow speed will reach its maximum just before the shock front. However, after the shock the flow in the jet will be subsonic. [13]

Lowering the back pressure further causes the shock to bend out into the jet (figure 1e), and a complex pattern of shocks and reflections is set up in the jet which will involve a mixture of subsonic and supersonic flow, or (if the back pressure is low enough) just supersonic flow. Because the shock is no longer perpendicular to the flow near the nozzle walls, it deflects the flow inward as it leaves the exit producing an initially contracting jet. This is referred as overexpanded flow because in this case the pressure at the nozzle exit is lower than that in the ambient (the back pressure)- i.e. the flow has been expanded by the nozzle too much. [13]

A further lowering of the back pressure changes and weakens the wave pattern in the jet. Eventually the back pressure will be low enough so that it is now equal to the pressure at the nozzle exit. In this case, the waves in the jet disappear altogether (figure 1f), and the jet will be uniformly supersonic. This situation, since it is often desirable, is referred to as the 'design condition'. [13]

Finally, if the back pressure is lowered even further we will create a new imbalance between the exit and back pressures (exit pressure greater than back pressure), figure 1g. In this situation (called 'underexpanded') what we call expansion waves (that produce gradual turning perpendicular to the axial flow and acceleration in the jet) form at the nozzle exit, initially turning the flow at the jet edges outward in a plume and setting up a different type of complex wave pattern. [13]

See also

Related Research Articles

<span class="mw-page-title-main">Mach number</span> Ratio of speed of an object moving through fluid and local speed of sound

The Mach number, often only Mach, is a dimensionless quantity in fluid dynamics representing the ratio of flow velocity past a boundary to the local speed of sound. It is named after the Czech physicist and philosopher Ernst Mach.

Compressible flow is the branch of fluid mechanics that deals with flows having significant changes in fluid density. While all flows are compressible, flows are usually treated as being incompressible when the Mach number is smaller than 0.3. The study of compressible flow is relevant to high-speed aircraft, jet engines, rocket motors, high-speed entry into a planetary atmosphere, gas pipelines, commercial applications such as abrasive blasting, and many other fields.

<span class="mw-page-title-main">Nozzle</span> Device used to direct the flow of a fluid

A nozzle is a device designed to control the direction or characteristics of a fluid flow as it exits an enclosed chamber or pipe.

de Laval nozzle Pinched tube generating supersonic flow

A de Laval nozzle is a tube which is pinched in the middle, making a carefully balanced, asymmetric hourglass shape. It is used to accelerate a compressible fluid to supersonic speeds in the axial (thrust) direction, by converting the thermal energy of the flow into kinetic energy. De Laval nozzles are widely used in some types of steam turbines and rocket engine nozzles. It also sees use in supersonic jet engines.

<span class="mw-page-title-main">Venturi effect</span> Reduced pressure caused by a flow restriction in a tube or pipe

The Venturi effect is the reduction in fluid pressure that results when a moving fluid speeds up as it flows through a constricted section of a pipe. The Venturi effect is named after its discoverer, the 18th-century Italian physicist Giovanni Battista Venturi.

A propelling nozzle is a nozzle that converts the internal energy of a working gas into propulsive force; it is the nozzle, which forms a jet, that separates a gas turbine, or gas generator, from a jet engine.

An orifice plate is a device used for measuring flow rate, for reducing pressure or for restricting flow.

<span class="mw-page-title-main">Oblique shock</span> Shock wave that is inclined with respect to the incident upstream flow direction

An oblique shock wave is a shock wave that, unlike a normal shock, is inclined with respect to the direction of incoming air. It will occur when a supersonic flow encounters a corner that effectively turns the flow into itself and compresses. The upstream streamlines are uniformly deflected after the shock wave. The most common way to produce an oblique shock wave is to place a wedge into supersonic, compressible flow. Similar to a normal shock wave, the oblique shock wave consists of a very thin region across which nearly discontinuous changes in the thermodynamic properties of a gas occur. While the upstream and downstream flow directions are unchanged across a normal shock, they are different for flow across an oblique shock wave.

Rayleigh flow refers to frictionless, non-adiabatic flow through a constant area duct where the effect of heat addition or rejection is considered. Compressibility effects often come into consideration, although the Rayleigh flow model certainly also applies to incompressible flow. For this model, the duct area remains constant and no mass is added within the duct. Therefore, unlike Fanno flow, the stagnation temperature is a variable. The heat addition causes a decrease in stagnation pressure, which is known as the Rayleigh effect and is critical in the design of combustion systems. Heat addition will cause both supersonic and subsonic Mach numbers to approach Mach 1, resulting in choked flow. Conversely, heat rejection decreases a subsonic Mach number and increases a supersonic Mach number along the duct. It can be shown that for calorically perfect flows the maximum entropy occurs at M = 1. Rayleigh flow is named after John Strutt, 3rd Baron Rayleigh.

<span class="mw-page-title-main">Chapman–Jouguet condition</span>

The Chapman–Jouguet condition holds approximately in detonation waves in high explosives. It states that the detonation propagates at a velocity at which the reacting gases just reach sonic velocity as the reaction ceases.

Accidental release source terms are the mathematical equations that quantify the flow rate at which accidental releases of liquid or gaseous pollutants into the ambient environment which can occur at industrial facilities such as petroleum refineries, petrochemical plants, natural gas processing plants, oil and gas transportation pipelines, chemical plants, and many other industrial activities. Governmental regulations in many countries require that the probability of such accidental releases be analyzed and their quantitative impact upon the environment and human health be determined so that mitigating steps can be planned and implemented.

<span class="mw-page-title-main">Rocket engine nozzle</span> Type of propelling nozzle

A rocket engine nozzle is a propelling nozzle used in a rocket engine to expand and accelerate combustion products to high supersonic velocities.

Fanno flow is the adiabatic flow through a constant area duct where the effect of friction is considered. Compressibility effects often come into consideration, although the Fanno flow model certainly also applies to incompressible flow. For this model, the duct area remains constant, the flow is assumed to be steady and one-dimensional, and no mass is added within the duct. The Fanno flow model is considered an irreversible process due to viscous effects. The viscous friction causes the flow properties to change along the duct. The frictional effect is modeled as a shear stress at the wall acting on the fluid with uniform properties over any cross section of the duct.

A cold gas thruster is a type of rocket engine which uses the expansion of a pressurized gas to generate thrust. As opposed to traditional rocket engines, a cold gas thruster does not house any combustion and therefore has lower thrust and efficiency compared to conventional monopropellant and bipropellant rocket engines. Cold gas thrusters have been referred to as the "simplest manifestation of a rocket engine" because their design consists only of a fuel tank, a regulating valve, a propelling nozzle, and the little required plumbing. They are the cheapest, simplest, and most reliable propulsion systems available for orbital maintenance, maneuvering and attitude control.

Characteristic velocity or , or C-star is a measure of the combustion performance of a rocket engine independent of nozzle performance, and is used to compare different propellants and propulsion systems. c* should not be confused with c, which is the effective exhaust velocity related to the specific impulse by: . Specific impulse and effective exhaust velocity are dependent on the nozzle design unlike the characteristic velocity, explaining why C-star is an important value when comparing different propulsion system efficiencies. c* can be useful when comparing actual combustion performance to theoretical performance in order to determine how completely chemical energy release occurred. This is known as c*-efficiency.

Isentropic nozzle flow describes the movement of a gas or fluid through a narrowing opening without an increase or decrease in entropy.

In gas dynamics, the Kantrowitz limit refers to a theoretical concept describing choked flow at supersonic or near-supersonic velocities. When an initially subsonic fluid flow experiences a reduction in cross-section area, the flow speeds up in order to maintain the same mass-flow rate, per the continuity equation. If a near supersonic flow experiences an area contraction, the velocity of the flow will increase until it reaches the local speed of sound, and the flow will be choked. This is the principle behind the Kantrowitz limit: it is the maximum amount of contraction a flow can experience before the flow chokes, and the flow speed can no longer be increased above this limit, independent of changes in upstream or downstream pressure.

<span class="mw-page-title-main">High pressure jet</span>

A high pressure jet is a stream of pressurized fluid that is released from an environment at a significantly higher pressure than ambient pressure from a nozzle or orifice, due to operational or accidental release. In the field of safety engineering, the release of toxic and flammable gases has been the subject of many R&D studies because of the major risk that they pose to the health and safety of workers, equipment and environment. Intentional or accidental release may occur in an industrial settings like natural gas processing plants, oil refineries and hydrogen storage facilities.

Mass injection flow refers to inviscid, adiabatic flow through a constant area duct where the effect of mass addition is considered. For this model, the duct area remains constant, the flow is assumed to be steady and one-dimensional, and mass is added within the duct. Because the flow is adiabatic, unlike in Rayleigh flow, the stagnation temperature is a constant. Compressibility effects often come into consideration, though this flow model also applies to incompressible flow.

References

  1. 1 2 Perry's Chemical Engineers' Handbook , Sixth Edition, McGraw-Hill Co., 1984.
  2. 1 2 Handbook of Chemical Hazard Analysis Procedures, Appendix B, Federal Emergency Management Agency, U.S. Dept. of Transportation, and U.S. Environmental Protection Agency, 1989. Handbook of Chemical Hazard Analysis, Appendix B Click on PDF icon, wait and then scroll down to page 391 of 520 PDF pages.
  3. 1 2 Methods For The Calculation Of Physical Effects Due To Releases Of Hazardous Substances (Liquids and Gases), PGS2 CPR 14E, Chapter 2, The Netherlands Organization Of Applied Scientific Research, The Hague, 2005. PGS2 CPR 14E Archived 2007-08-09 at the Wayback Machine
  4. "Read page 2 of this brochure" (PDF). Archived from the original (PDF) on 2016-07-05. Retrieved 2012-04-14.
  5. Control Valve Handbook Archived 2019-10-18 at the Wayback Machine Search document for "Choked".
  6. Potter & Wiggert, 2010, Mechanics of Fluids, 3rd SI ed., Cengage.
  7. Perry, Robert H.; Green, Don W. (1984). Perry's Chemical Engineers' Handbook, Table 2-166 (6th ed.). McGraw-Hill Company. ISBN   0-07-049479-7.
  8. Phillips Petroleum Company (1962). Reference Data For Hydrocarbons And Petro-Sulfur Compounds (Second Printing ed.). Phillips Petroleum Company.
  9. Dudzinski, T. J.; Johnson, R. C.; Krause, L. N. (April 1968). "Performance of a venturi meter with separable diffuser" (PDF). NASA . Archived (PDF) from the original on 2022-11-30.
  10. "Section 3 -- Choked Flow". Archived from the original on 2017-07-22. Retrieved 2007-12-22.
  11. Cunningham, R.G., "Orifice Meters with Supercritical Compressible Flow" Transactions of the ASME, Vol. 73, pp. 625-638, 1951.
  12. Richard W. Miller (1996). Flow Measurement Engineering Handbook (Third ed.). McGraw Hill. ISBN   0-07-042366-0.
  13. 1 2 3 4 5 6 7 The flow through the nozzle