Power Jets W.2

Last updated

W.2
Whittle Jet Engine W2-700.JPG
Power Jets W.2/700 on display at the Farnborough Air Sciences Trust (rear view).
Type Turbojet
Manufacturer Rover Car Company
First runc.1941
Major applications Gloster E.28/39
Gloster F.9/40
Developed from Power Jets W.1
Developed into General Electric I-A
Rolls-Royce Welland (W.2B-Rover B.23)
Rolls-Royce Derwent (W.2B/500-Rover B.26)

The Power Jets W.2 was a British turbojet engine designed by Frank Whittle and Power Jets (Research and Development) Ltd. Like the earlier Power Jets W.1, the reverse-flow combustion configuration included a double-sided centrifugal compressor, 10 combustion chambers and an axial-flow turbine with air-cooled disc. It entered production as the Rolls-Royce Welland and was the first UK jet engine to power operational aircraft, the Gloster Meteor.

Contents

Design and development

In 1940 the Air Ministry placed a contract with the Gloster Aircraft Company for prototypes of a new twin-engined jet fighter aircraft to the requirement of F.9/40, this aircraft became the Gloster Meteor. At the same time, Power Jets was authorised to design a new engine that was intended to power the same aircraft. [1] The W.2 was built under contract by the Rover Car Company in the early 1940s. Relations between Power Jets and Rover were somewhat strained and development of the W.2 was very slow.

In late 1942, Rover agreed to exchange their jet engine factory at Barnoldswick, Lancashire for the Rolls-Royce Meteor tank engine factory in Nottingham, with no money changing hands. At the behest of the UK government, Rolls-Royce thereupon assumed control of the W.2 project, with Frank Whittle and his small team at Power Jets acting in an advisory capacity. [2] Together, they ironed out the problems with the W.2 and finally put the engine into mass production as the 1,600 pounds-force (7.1 kN) thrust Rolls-Royce Welland. These engines were installed in the Gloster Meteor F Mk1 and early F Mk3's and entered service in 1944.

After initial suggestions in 1939 by the Engine Department of the Royal Aircraft Establishment (RAE), the latter's Pyestock Section experimented with the technique of injecting fuel into the engine's exhaust nozzle, later known as reheat, and this technique was further refined after Power Jets and the personnel from Pyestock had been amalgamated. Reheat was later flight trialled in the W.2/700 engines in a Meteor I. The technique increased the Meteor's speed by 30-40 mph. [3]

Variants

The Rover designations for engines produced at Barnoldswick were given a "B" prefix together with their own internal design number, e.g., "B.23". Later, after designs were transferred to Rolls-Royce (RR) an additional "R" was prefixed, changing the designation to "RB" to prevent possible confusion with US bomber designations, e.g., "RB.23". This "RB" designation system continues to be used within Rolls-Royce to this day.

A Rover W.2B/26 on display at the Midland Air Museum This design was later to become the Derwent Welland.JPG
A Rover W.2B/26 on display at the Midland Air Museum This design was later to become the Derwent
W.2
Design thrust of 1,600 pounds-force (7.1 kN) and a dry weight of approximately 850 pounds (390 kg). Early versions could not exceed 1,000lbf thrust without compressor surge and excessive exhaust gas temperature. Engines produced by Rover under subcontract to MAP. W.2 design quickly abandoned and replaced by W.2B after Whittle re-evaluated W.2 design and calculated exhaust gas velocity would approach Mach 1.
W.2 Mark IV
W.2 manufactured by British Thomson-Houston (BTH) but discovered to be sensitive to design assumptions, so changed in stages by Power Jets to bring in line with W.2B design. Wrecked by bursting of faulty new impeller forging on 10 October 1941 after completing "a useful amount of testing". [4]
W.2Y
Direct flow "straight-through" combustion chamber design, May 1940, not built.
W.2B/Rover B.23
Initial first two engines produced by Rover as the 'B.23' with one installed in E.28/39 W4046/G, [5] other units built by BTH, and Power Jets. [6] Initially engines suffered failure of Rex 78 turbine blades, General Electric (GE) in the US sending Rover several improved sets of Hastelloy B blades in July 1942. Blade material later switched to Nimonic 80. [7] Engine design later transferred to Rolls-Royce as prototype of the B.23 Welland, and also built in US as GE I-A. [8] Re-designed 'B.23' combustion chambers for this engine designed by Joseph Lucas Ltd. [9]
W.2B Mark II
MAP-authorised Rover re-design using 10-vane diffuser designed by Rover/RR, and new turbine with fewer, broader blades. By Dec 1941 giving 1,510 pounds-force (6.7 kN) without surging. [10]
W.2B/500 - Rover B.26
W.2B with longer turbine blades and using diffuser of W.2B Mark II and new blower case and turbine design to give 1,850 pounds-force (8.2 kN) at 16,750 rpm. First run in September 1942 attaining 1,755 pounds-force (7.81 kN). Sfc, 1.13 lb/(hr lbf) with jet pipe temperature of 606°C. Initially suffered from resonance at 14,000 rpm leading to impeller blade cracking. MAP-authorised re-design with straight-through combustion chambers by Adrian Lombard and John Herriot (the latter of the AID) at Rover as the B.26 with four test engines being built before design taken over by RR and after re-design for greater air flow becoming the B.37 Derwent. [11] 'B.26' combustion chambers designed by Joseph Lucas Ltd.
W.2/700
New 'Type 16' compressor diffuser, new compressor casing, plus improved compressor rotor sent over from GE, [12] all combined to produce 80% compressor efficiency, Nimonic 80 turbine blades, and a static thrust of 2,000 pounds-force (8.9 kN) at 16,700 rpm. By 1944 producing 2,485 pounds-force (11.05 kN) at a pressure ratio of 4:1 [13] with airflow of 47.15 lb/s from same size engine as W.1. [14] Sfc, 1.05 lb/(hr lbf) with jet pipe temperature of 647°C. Flight-tested reheat in Meteor I EE215/G increasing top speed from 420 mph to 460 mph. [15] Flight-tested to 505 mph at 30,000 feet in E.28/39 W4046/G. [16] Also ground-tested with aft ducted fan. [17]
W.2/800
W.2/700 with longer turbine blades for greater thrust. Suffered from turbine blade failure.
W.2/850
A developed version of greater thrust of 2,485 pounds-force (11.05 kN) at 16,500 rpm and a higher dry weight of 950 pounds (430 kg).
Rolls-Royce B.23 Welland
Mass produced version of the W.2B/Rover B.23 for Meteor I. Developed 1,600 pounds-force (7.1 kN) static thrust. Sfc, 1.12 lb/(hr lbf). 100 produced. Uprated to 1,700 pounds-force (7.6 kN) thrust with nozzle inserts for chasing V-1's. Type-tested to 500 hours, into service for Meteor I at 150 hours time between overhaul (TBO). [18]
Rolls-Royce B.37 Derwent I
Combined design based on W.2B/500 and Rover B.26 for Meteor III. Straight-through development of the 'trombone' style W.2 configuration, using already tooled-up compressor casing for Welland, new RR diffuser, and with compressor and turbine air and gas flow increased by 25% to give 2,000 pounds-force (8.9 kN) static thrust. First tested July 1943. Type-tested to 500 hours, into service for Meteor III at 150 hours TBO.

Applications

The following aircraft were used for test purposes only:

The W.2B/700 was to be used in the Miles M.52 supersonic research aircraft. In order to achieve the thrust required for supersonic flight, a version of the engine was developed using a turbine-driven "augmenter" ducted fan (an early form of turbofan). The NO.4 augmenter was mounted behind the engine, drawing fresh air through ducts surrounding the engine. Power was boosted even further by supplying the air to the world's first "reheat jetpipe" or afterburner which was actually a very early athodyd or ramjet. The hope was that this combination of the W.2/700, turbofan augmenter and re-heat/ramjet would produce the required power for the proposed 1,000 mph aircraft. [19]

Engines on display

Specifications (W.2/850)

Data fromJane's [20]

General characteristics

Components

Performance

See also

Related development

Related lists

Related Research Articles

<span class="mw-page-title-main">Jet engine</span> Aircraft engine that produces thrust by emitting a jet of gas

A jet engine is a type of reaction engine, discharging a fast-moving jet of heated gas that generates thrust by jet propulsion. While this broad definition may include rocket, water jet, and hybrid propulsion, the term jet engine typically refers to an internal combustion air-breathing jet engine such as a turbojet, turbofan, ramjet, pulse jet, or scramjet. In general, jet engines are internal combustion engines.

<span class="mw-page-title-main">Turboprop</span> Turbine engine driving an aircraft propeller

A turboprop is a turbine engine that drives an aircraft propeller.

<span class="mw-page-title-main">Frank Whittle</span> British Royal Air Force engineer and air officer (1907–1996)

Air Commodore Sir Frank Whittle, was an English engineer, inventor and Royal Air Force (RAF) air officer. He is credited with having invented the turbojet engine. A patent was submitted by Maxime Guillaume in 1921 for a similar invention which was technically unfeasible at the time. Whittle's jet engines were developed some years earlier than those of Germany's Hans von Ohain, who designed the first-to-fly turbojet engine.

<span class="mw-page-title-main">Turbojet</span> Airbreathing jet engine which is typically used in aircraft

The turbojet is an airbreathing jet engine which is typically used in aircraft. It consists of a gas turbine with a propelling nozzle. The gas turbine has an air inlet which includes inlet guide vanes, a compressor, a combustion chamber, and a turbine. The compressed air from the compressor is heated by burning fuel in the combustion chamber and then allowed to expand through the turbine. The turbine exhaust is then expanded in the propelling nozzle where it is accelerated to high speed to provide thrust. Two engineers, Frank Whittle in the United Kingdom and Hans von Ohain in Germany, developed the concept independently into practical engines during the late 1930s.

<span class="mw-page-title-main">Afterburner</span> Adds additional thrust to an engine at the cost of increased fuel consumption

An afterburner is an additional combustion component used on some jet engines, mostly those on military supersonic aircraft. Its purpose is to increase thrust, usually for supersonic flight, takeoff, and combat. The afterburning process injects additional fuel into a combustor in the jet pipe behind the turbine, "reheating" the exhaust gas. Afterburning significantly increases thrust as an alternative to using a bigger engine with its attendant weight penalty, but at the cost of increased fuel consumption which limits its use to short periods. This aircraft application of "reheat" contrasts with the meaning and implementation of "reheat" applicable to gas turbines driving electrical generators and which reduces fuel consumption.

<span class="mw-page-title-main">Rolls-Royce Conway</span> 1950s British turbofan aircraft engine family

The Rolls-Royce RB.80 Conway was the first turbofan jet engine to enter service. Development started at Rolls-Royce in the 1940s, but the design was used only briefly, in the late 1950s and early 1960s, before other turbofan designs replaced it. The Conway engine was used on versions of the Handley Page Victor, Vickers VC10, Boeing 707-420 and Douglas DC-8-40.

<span class="mw-page-title-main">Rolls-Royce Nene</span> 1940s British turbojet aircraft engine

The Rolls-Royce RB.41 Nene is a 1940s British centrifugal compressor turbojet engine. The Nene was a complete redesign, rather than a scaled-up Rolls-Royce Derwent, with a design target of 5,000 lbf (22 kN), making it the most powerful engine of its era. First run in 1944, it was Rolls-Royce's third jet engine to enter production, and first ran less than 6 months from the start of design. It was named after the River Nene in keeping with the company's tradition of naming its jet engines after rivers.

<span class="mw-page-title-main">Rolls-Royce Derwent</span> 1940s British turbojet aircraft engine

The Rolls-Royce RB.37 Derwent is a 1940s British centrifugal compressor turbojet engine, the second Rolls-Royce jet engine to enter production. It was an improved version of the Rolls-Royce Welland, which itself was a renamed version of Frank Whittle's Power Jets W.2B. Rolls-Royce inherited the Derwent design from Rover when they took over their jet engine development in 1943.

<span class="mw-page-title-main">Stanley Hooker</span> British aircraft engine engineer (1907–1984)

Sir Stanley George Hooker, CBE, FRS, DPhil, BSc, FRAeS, MIMechE, FAAAS, was a mathematician and jet engine engineer. He was employed first at Rolls-Royce where he worked on the earliest designs such as the Welland and Derwent, and later at Bristol Aero Engines where he helped bring the troubled Proteus turboprop and the Olympus turbojet to market. He then designed the famous Pegasus vectored thrust turbofan used in the Hawker Siddeley Harrier.

<span class="mw-page-title-main">Rolls-Royce Welland</span> Turbojet aircraft engine, Britains first production jet

The Rolls-Royce RB.23 Welland was Britain's first production jet engine. It entered production in 1943 for the Gloster Meteor. The name Welland is taken from the River Welland, in keeping with the Rolls-Royce policy of naming early jet engines after rivers based on the idea of continuous flow, air through the engine and water in a river.

This article outlines the important developments in the history of the development of the air-breathing (duct) jet engine. Although the most common type, the gas turbine powered jet engine, was certainly a 20th-century invention, many of the needed advances in theory and technology leading to this invention were made well before this time.

<span class="mw-page-title-main">Metropolitan-Vickers F.2</span> Early turbojet engine

The Metropolitan-Vickers F.2 is an early turbojet engine and the first British design to be based on an axial-flow compressor. It was an extremely advanced design for the era, using a nine-stage axial compressor, annular combustor, and a two-stage turbine.

A jet engine performs by converting fuel into thrust. How well it performs is an indication of what proportion of its fuel goes to waste. It transfers heat from burning fuel to air passing through the engine. In doing so it produces thrust work when propelling a vehicle but a lot of the fuel is wasted and only appears as heat. Propulsion engineers aim to minimize the degradation of fuel energy into unusable thermal energy. Increased emphasis on performance improvements for commercial airliners came in the 1970's from the rising cost of fuel.

<span class="mw-page-title-main">General Electric J31</span> First jet engine mass-produced in the US

The General Electric J31 was the first jet engine to be mass-produced in the United States.

<span class="mw-page-title-main">Rolls-Royce RB.50 Trent</span> 1940s British turboprop aircraft engine

The Rolls-Royce RB.50 Trent was the first Rolls-Royce turboprop engine.

<span class="mw-page-title-main">Power Jets</span> Defunct British jet engine manufacturer

Power Jets was a British company set up by Frank Whittle for the purpose of designing and manufacturing jet engines. The company was nationalised in 1944, and evolved into the National Gas Turbine Establishment.

<span class="mw-page-title-main">Power Jets W.1</span>

The Power Jets W.1 was a British turbojet engine designed by Frank Whittle and Power Jets. The W.1 was built under contract by British Thomson-Houston (BTH) in the early 1940s. It is notable for being the first British jet engine to fly, as the "Whittle Supercharger Type W1", powering the Gloster E.28/39 on its maiden flight at RAF Cranwell on 15 May 1941. The W.1 was superseded by the Power Jets W.2.

The Packard XJ49 was the first U.S. designed turbofan aircraft engine, and was developed by the Packard Motor Co. in the 1940s.

The Power Jets WU was a series of three very different experimental jet engines produced and tested by Frank Whittle and his small team in the late 1930s.

The General Electric I-A was the first working jet engine in the United States, manufactured by General Electric (GE) and achieving its first run on April 18, 1942.

References

Notes

  1. Smith 1946, p. 87.
  2. Hooker 1984, Chapter 3.
  3. "Archived copy". Archived from the original on 27 April 2016. Retrieved 16 April 2016.{{cite web}}: CS1 maint: archived copy as title (link)
  4. http://www.imeche.org/docs/default-source/presidents-choice/jc12_1.pdf [ bare URL PDF ]
  5. "Archived copy". Archived from the original on 28 April 2016. Retrieved 16 April 2016.{{cite web}}: CS1 maint: archived copy as title (link)
  6. "Archived copy". Archived from the original on 5 March 2016. Retrieved 16 April 2016.{{cite web}}: CS1 maint: archived copy as title (link)
  7. http://web.itu.edu.tr/aydere/history.pdf [ bare URL PDF ]
  8. "Archived copy". Archived from the original on 27 April 2016. Retrieved 16 April 2016.{{cite web}}: CS1 maint: archived copy as title (link)
  9. "Archived copy". Archived from the original on 28 April 2016. Retrieved 16 April 2016.{{cite web}}: CS1 maint: archived copy as title (link)
  10. http://web.itu.edu.tr/aydere/history.pdf [ bare URL PDF ]
  11. "Archived copy". Archived from the original on 3 July 2017. Retrieved 16 April 2016.{{cite web}}: CS1 maint: archived copy as title (link)
  12. "World Encyclopedia of Aero Engines - 5th edition" by Bill Gunston, Sutton Publishing, 2006, p.160
  13. http://web.itu.edu.tr/aydere/history.pdf [ bare URL PDF ]
  14. "Archived copy". Archived from the original on 27 April 2016. Retrieved 16 April 2016.{{cite web}}: CS1 maint: archived copy as title (link)
  15. "Archived copy". Archived from the original on 7 May 2016. Retrieved 19 April 2016.{{cite web}}: CS1 maint: archived copy as title (link)
  16. "Archived copy". Archived from the original on 13 May 2016. Retrieved 25 April 2016.{{cite web}}: CS1 maint: archived copy as title (link)
  17. "World Encyclopedia of Aero Engines - 5th edition" by Bill Gunston, Sutton Publishing, 2006, p.160
  18. "World Encyclopedia of Aero Engines - 5th edition" by Bill Gunston, Sutton Publishing, 2006, p.192
  19. Eric Brown 2012, The Miles M.52: Gateway to Supersonic Flight
  20. Jane's 1989, p. 266.

Bibliography

  • Gunston, Bill. World Encyclopedia of Aero Engines. Cambridge, England. Patrick Stephens Limited, 1989. ISBN   1-85260-163-9
  • Jane's Fighting Aircraft of World War II. London. Studio Editions Ltd, 1998. ISBN   0-517-67964-7
  • Smith, Geoffrey G.Gas Turbines and Jet Propulsion for Aircraft, London S.E.1, Flight Publishing Co.Ltd., 1946.
  • Kay, Anthony L. (2007). Turbojet History and Development 1930-1960. Vol. 1 (1st ed.). Ramsbury: The Crowood Press. ISBN   978-1-86126-912-6.
  • Hooker, Sir Stanley. "Not much of an Engineer". Airlife, England, 1984. ISBN   0 906393 35 3