Visible-light astronomy

Last updated
A diagram of the electromagnetic spectrum with the Earth's atmospheric transmittance (or opacity) and the types of telescopes used to image parts of the spectrum. Atmospheric electromagnetic opacity.svg
A diagram of the electromagnetic spectrum with the Earth's atmospheric transmittance (or opacity) and the types of telescopes used to image parts of the spectrum.

Visible-light astronomy encompasses a wide variety of astronomical observation via telescopes that are sensitive in the range of visible light (optical telescopes). Visible-light astronomy is part of optical astronomy,[ clarification needed ] and differs from astronomies based on invisible types of light in the electromagnetic radiation spectrum, such as radio waves, infrared waves, ultraviolet waves, X-ray waves and gamma-ray waves. Visible light ranges from 380 to 750 nanometers in wavelength.

Contents

Visible-light astronomy has existed as long as people have been looking up at the night sky, although it has since improved in its observational capabilities since the invention of the telescope, which is commonly credited to Hans Lippershey, a German-Dutch spectacle-maker, [1] although Galileo played a large role in the development and creation of telescopes.

Since visible-light astronomy is restricted to only visible light, no equipment is necessary for simply star gazing. This means that it's the most commonly participated in type of astronomy, as well as the oldest.

History

Beginning

1858 fresco by Giuseppe Bertini depicting Galileo showing the Doge of Venice how to use the telescope Bertini fresco of Galileo Galilei and Doge of Venice.jpg
1858 fresco by Giuseppe Bertini depicting Galileo showing the Doge of Venice how to use the telescope

Before the advent of telescopes, astronomy was limited solely to unaided eyesight. Humans have been gazing at stars and other objects in the night sky for thousands of years, as is evident in the naming of many constellations, notably the largely Greek names used today.

Hans Lippershey, a German-Dutch spectacle maker, is commonly credited as being the first to invent the optical telescope. Lippershey is the first recorded person to apply for a patent for a telescope; [1] however, it is unclear if Lippershey was the first to build a telescope. Based only on uncertain descriptions of the telescope for which Lippershey tried to obtain a patent, Galileo Galilei made a telescope with about 3× magnification in the following year. Galileo later made improved versions with up to 30× magnification.[ citation needed ] With a Galilean telescope, the observer could see magnified, upright images on Earth; it was what is commonly known as a terrestrial telescope or a spyglass. Galileo could also use it to observe the sky, and for a time was one of those who could construct telescopes good enough for that purpose. On 25 August 1609, Galileo demonstrated one of his early telescopes, with a magnification of up to 8 or 9, to Venetian lawmakers. Galileo's telescopes were also a profitable sideline, selling them to merchants who found them useful both at sea and as items of trade. He published his initial telescopic astronomical observations in March 1610 in a brief treatise titled Sidereus Nuncius (Starry Messenger). [2]

The human eye, now with optical aid, remained the only image sensor until the advent of astrophotography in the 19th century.

Modern day

In the modern day, visible-light astronomy is still practiced by many amateur astronomers, especially since telescopes are much more widely available for the public, as compared to when they were first being invented. Government agencies, such as NASA, are very involved in the modern day research and observation of visible objects and celestial bodies. In the modern day, the highest quality pictures and data are obtained via space telescopes; telescopes that are outside of the Earth's atmosphere. This allows for much clearer observations, as the atmosphere is not disrupting the image and viewing quality of the telescope, meaning objects can be observed in much greater detail, and much more distant or low-light objects may be observed. Additionally, this means that observations are able to be made at any time, rather than only during the night.

One of Hubble's most famous images, Pillars of Creation, shows stars forming in the Eagle Nebula (2014 image). Pillars of creation 2014 HST WFC3-UVIS full-res denoised.jpg
One of Hubble's most famous images, Pillars of Creation , shows stars forming in the Eagle Nebula (2014 image).

Hubble Space Telescope

The Hubble Space Telescope is a space telescope created by NASA, and was launched into low Earth orbit in 1990. [3] It is still in operation today. The Hubble Space Telescope's four main instruments observe in the near ultraviolet, visible, and near infrared spectra. Hubble's images are some of the most detailed images ever taken, leading to many breakthroughs in astrophysics, such as accurately determining the rate of expansion of the universe.

Optical telescopes

There are three main types of telescopes used in visible-light astronomy:

Each type of telescope suffers from different types of aberration; refracting telescopes have chromatic aberration, which causes colors to be shown on edges separating light and dark parts of the image, where there should not be such colors. This is due to the lens being unable to focus all colors to the same convergence point. [4] Reflecting telescopes suffer from several types of optical inaccuracies, such as off-axis aberrations near the edges of the field of view. Catadioptric telescopes vary in the types of optical inaccuracies present, as there are numerous catadioptric telescope designs.

Effect of ambient brightness

Light pollution map of Europe Light pollution europe.jpg
Light pollution map of Europe

The visibility of celestial objects in the night sky is affected by light pollution, with the presence of the Moon in the night sky historically hindering astronomical observation by increasing the amount of ambient lighting. With the advent of artificial light sources, however, light pollution has been a growing problem for viewing the night sky. Special filters and modifications to light fixtures can help to alleviate this problem, but for the best views, both professional and amateur optical astronomers seek viewing sites located far from major urban areas. In order to avoid light pollution of Earth's sky, among other reasons, many telescopes are put outside of the Earth's atmosphere, where not only light pollution, but also atmospheric distortion and obscuration are minimized.

Commonly observed objects

The most commonly observed objects tend to be ones that do not require a telescope to view, such as the Moon, meteors, planets, constellations, and stars.

The Moon is a very commonly observed astronomical object, especially by amateur astronomers and skygazers. This is due to several reasons: the Moon is the brightest object in the night sky, the Moon is the largest object in the night sky, and the Moon has long been significant in many cultures, such as being the basis for many calendars. The Moon also does not require any kind of telescope or binoculars to see effectively, making it extremely convenient and common for people to observe.[ original research? ]

Meteors, often called "shooting stars" are also commonly observed. Meteor showers, such as the Perseids and Leonids, make viewing meteors much easier, as a multitude of meteors are visible in a relatively short period of time.

Planets are usually observed with the aid of a telescope or binoculars. Venus is likely the easiest planet to observe without the aid of any instruments, as it is very bright, and can even be seen in daylight. [5] However, Mars, Jupiter, and Saturn can also be seen without the aid of telescopes or binoculars.

Constellations and stars are also often observed, and have been used in the past for navigation, especially by ships at sea. [6] One of the most recognizable constellations is the Big Dipper, which is part of the constellation Ursa Major. Constellations also serve to help describe the location of other objects in the sky.

See also

Related Research Articles

<span class="mw-page-title-main">Amateur astronomy</span> Hobby of watching the sky and stars

Amateur astronomy is a hobby where participants enjoy observing or imaging celestial objects in the sky using the unaided eye, binoculars, or telescopes. Even though scientific research may not be their primary goal, some amateur astronomers make contributions in doing citizen science, such as by monitoring variable stars, double stars, sunspots, or occultations of stars by the Moon or asteroids, or by discovering transient astronomical events, such as comets, galactic novae or supernovae in other galaxies.

<span class="mw-page-title-main">Binoculars</span> Pair of telescopes mounted side-by-side

Binoculars or field glasses are two refracting telescopes mounted side-by-side and aligned to point in the same direction, allowing the viewer to use both eyes when viewing distant objects. Most binoculars are sized to be held using both hands, although sizes vary widely from opera glasses to large pedestal-mounted military models.

<i>Sidereus Nuncius</i> Astronomical treatise of Galileo

Sidereus Nuncius is a short astronomical treatise published in Neo-Latin by Galileo Galilei on March 13, 1610. It was the first published scientific work based on observations made through a telescope, and it contains the results of Galileo's early observations of the imperfect and mountainous Moon, of hundreds of stars not visible to the naked eye in the Milky Way and in certain constellations, and of the Medicean Stars that appeared to be circling Jupiter.

<span class="mw-page-title-main">Circinus</span> Constellation in the southern celestial hemisphere

Circinus is a small, faint constellation in the southern sky, first defined in 1756 by the French astronomer Nicolas-Louis de Lacaille. Its name is Latin for compass, referring to the drafting tool used for drawing circles. Its brightest star is Alpha Circini, with an apparent magnitude of 3.19. Slightly variable, it is the brightest rapidly oscillating Ap star in the night sky. AX Circini is a Cepheid variable visible with the unaided eye, and BX Circini is a faint star thought to have been formed from the merger of two white dwarfs. Two sun-like stars have planetary systems: HD 134060 has two small planets, and HD 129445 has a Jupiter-like planet. Supernova SN 185 appeared in Circinus in 185 AD and was recorded by Chinese observers. Two novae have been observed more recently, in the 20th century.

<span class="mw-page-title-main">History of the telescope</span>

One of the earliest recorded telescope-like tools is that of the first century Jewish sage, Rabban Gamliel. The Talmud records his tube shaped tool that enabled him to see great distances.

<span class="mw-page-title-main">Refracting telescope</span> Type of optical telescope

A refracting telescope is a type of optical telescope that uses a lens as its objective to form an image. The refracting telescope design was originally used in spyglasses and astronomical telescopes but is also used for long-focus camera lenses. Although large refracting telescopes were very popular in the second half of the 19th century, for most research purposes, the refracting telescope has been superseded by the reflecting telescope, which allows larger apertures. A refractor's magnification is calculated by dividing the focal length of the objective lens by that of the eyepiece.

<span class="mw-page-title-main">Optical telescope</span> Telescope for observations with visible light

An optical telescope is a telescope that gathers and focuses light mainly from the visible part of the electromagnetic spectrum, to create a magnified image for direct visual inspection, to make a photograph, or to collect data through electronic image sensors.

Naked eye, also called bare eye or unaided eye, is the practice of engaging in visual perception unaided by a magnifying, light-collecting optical instrument, such as a telescope or microscope, or eye protection.

<span class="mw-page-title-main">Objective (optics)</span> Lens or mirror in optical instruments

In optical engineering, an objective is an optical element that gathers light from an object being observed and focuses the light rays from it to produce a real image of the object. Objectives can be a single lens or mirror, or combinations of several optical elements. They are used in microscopes, binoculars, telescopes, cameras, slide projectors, CD players and many other optical instruments. Objectives are also called object lenses, object glasses, or objective glasses.

<span class="mw-page-title-main">Newtonian telescope</span> Type of reflecting telescope

The Newtonian telescope, also called the Newtonian reflector or just a Newtonian, is a type of reflecting telescope invented by the English scientist Sir Isaac Newton, using a concave primary mirror and a flat diagonal secondary mirror. Newton's first reflecting telescope was completed in 1668 and is the earliest known functional reflecting telescope. The Newtonian telescope's simple design has made it very popular with amateur telescope makers.

<span class="mw-page-title-main">Eyepiece</span> Type of lens attached to a variety of optical devices such as telescopes and microscopes

An eyepiece, or ocular lens, is a type of lens that is attached to a variety of optical devices such as telescopes and microscopes. It is named because it is usually the lens that is closest to the eye when someone looks through an optical device to observe an object or sample. The objective lens or mirror collects light from an object or sample and brings it to focus creating an image of the object. The eyepiece is placed near the focal point of the objective to magnify this image to the eyes. The amount of magnification depends on the focal length of the eyepiece.

<span class="mw-page-title-main">Night sky</span> Appearance of the sky in a clear night

The night sky is the nighttime appearance of celestial objects like stars, planets, and the Moon, which are visible in a clear sky between sunset and sunrise, when the Sun is below the horizon.

<span class="mw-page-title-main">Catadioptric system</span> Optical system where refraction and reflection are combined

A catadioptric optical system is one where refraction and reflection are combined in an optical system, usually via lenses (dioptrics) and curved mirrors (catoptrics). Catadioptric combinations are used in focusing systems such as searchlights, headlamps, early lighthouse focusing systems, optical telescopes, microscopes, and telephoto lenses. Other optical systems that use lenses and mirrors are also referred to as "catadioptric", such as surveillance catadioptric sensors.

<span class="mw-page-title-main">Maksutov telescope</span> Catadioptric telescope design

The Maksutov is a catadioptric telescope design that combines a spherical mirror with a weakly negative meniscus lens in a design that takes advantage of all the surfaces being nearly "spherically symmetrical". The negative lens is usually full diameter and placed at the entrance pupil of the telescope. The design corrects the problems of off-axis aberrations such as coma found in reflecting telescopes while also correcting chromatic aberration. It was patented in 1941 by Soviet optician Dmitri Dmitrievich Maksutov. Maksutov based his design on the idea behind the Schmidt camera of using the spherical errors of a negative lens to correct the opposite errors in a spherical primary mirror. The design is most commonly seen in a Cassegrain variation, with an integrated secondary, that can use all-spherical elements, thereby simplifying fabrication. Maksutov telescopes have been sold on the amateur market since the 1950s.

<span class="mw-page-title-main">Finderscope</span>

A finderscope is an accessory sighting device used in astronomy and stargazing, typically a small auxiliary refracting telescope/monocular mounted parallelly on a larger astronomical telescope along the same line of sight. The finderscope usually has a much smaller magnification than the main telescope, thus providing a larger field of view, useful for manually pointing the main telescope into a roughly correct direction that can easily place a desired astronomical object in view when zooming in. Some finderscopes have sophisticated reticles to more accurately aim the main telescope and/or even perform stadiametric measurements.

<span class="mw-page-title-main">Telescope</span> Instrument that makes distant objects appear magnified

A telescope is a device used to observe distant objects by their emission, absorption, or reflection of electromagnetic radiation. Originally, it was an optical instrument using lenses, curved mirrors, or a combination of both to observe distant objects – an optical telescope. Nowadays, the word "telescope" is defined as a wide range of instruments capable of detecting different regions of the electromagnetic spectrum, and in some cases other types of detectors.

<span class="mw-page-title-main">Lunar observation</span> Methods and instruments used to observe the Moon

The Moon is the largest natural satellite of and the closest major astronomical object to Earth. The Moon may be observed by using a variety of optical instruments, ranging from the naked eye to large telescopes. The Moon is the only celestial body upon which surface features can be discerned with the unaided eyes of most people.

<span class="mw-page-title-main">Gemini (constellation)</span> Zodiac constellation in the northern hemisphere

Gemini is one of the constellations of the zodiac and is located in the northern celestial hemisphere. It was one of the 48 constellations described by the 2nd century AD astronomer Ptolemy, and it remains one of the 88 modern constellations today. Its name is Latin for twins, and it is associated with the twins Castor and Pollux in Greek mythology. Its old astronomical symbol is (♊︎).

<span class="mw-page-title-main">C/2009 R1 (McNaught)</span> Non-periodic comet discovered in 2009

C/2009 R1 (McNaught), one of more than fifty comets known as Comet McNaught, is a non-periodic comet discovered by British-Australian astronomer Robert H. McNaught on September 9, 2009, using the Uppsala Southern Schmidt Telescope at Siding Spring Observatory in New South Wales, Australia. The discovery was confirmed the same day at the Optical Ground Station telescope at Tenerife. After the discovery, earlier images of the comet were found from July 20, August 1, and August 18, 2009. It is believed that C/2009 R1 has left the Solar System permanently.

<span class="mw-page-title-main">Astronomical filter</span> Telescope accessory used to improve details of viewed objects

An astronomical filter is a telescope accessory consisting of an optical filter used by amateur astronomers to simply improve the details and contrast of celestial objects, either for viewing or for photography. Research astronomers, on the other hand, use various band-pass filters for photometry on telescopes, in order to obtain measurements which reveal objects' astrophysical properties, such as stellar classification and placement of a celestial body on its Wien curve.

References

  1. 1 2 King, Henry C. (2003). The History of the Telescope. Courier Corporation. p. 30. ISBN   978-0-486-43265-6.
  2. Sharratt (1994, pp. 1–2)
  3. "NASA – NASA's Great Observatories". www.nasa.gov. http://teachspacescience.org/graphics/pdf/10000870.pdf, , http://chandra.harvard.edu/, http://www.spitzer.caltech.edu . Retrieved 2018-08-08.{{cite web}}: External link in |others= (help)CS1 maint: others (link)
  4. Marimont, David H.; Wandell, Brian A. (1994-12-01). "Matching color images: the effects of axial chromatic aberration". JOSA A. 11 (12): 3113–3122. Bibcode:1994JOSAA..11.3113M. doi:10.1364/JOSAA.11.003113. ISSN   1520-8532.
  5. Ellis, E. L. (1995). "1995JBAA..105..311E Page 311". Journal of the British Astronomical Association. 105: 311. Bibcode:1995JBAA..105..311E.
  6. "Celestial Navigation | Time and Navigation". timeandnavigation.si.edu. Retrieved 2018-07-25.