Inflationary epoch

Last updated

In physical cosmology, the inflationary epoch was the period in the evolution of the early universe when, according to inflation theory, the universe underwent an extremely rapid exponential expansion. This rapid expansion increased the linear dimensions of the early universe by a factor of at least 1026 (and possibly a much larger factor), and so increased its volume by a factor of at least 1078. Expansion by a factor of 1026 is equivalent to expanding an object 1 nanometer (10−9 m, about half the width of a molecule of DNA) in length to one approximately 10.6 light years (about 62 trillion miles).

Contents

Description

Vacuum state is a configuration of quantum fields representing a local minimum (but not necessarily a global minimum) of energy.

Inflationary models propose that at approximately 10−36 seconds after the Big Bang, vacuum state of the Universe was different from the one seen at the present time: the inflationary vacuum had a much higher energy density.

According to general relativity, any vacuum state with non-zero energy density generates a repulsive force that leads to an expansion of space. In inflationary models, early high-energy vacuum state causes a very rapid expansion. This expansion explains various properties of the current universe that are difficult to account for without such an inflationary epoch.

Most inflationary models propose a scalar field called the inflaton field, with properties necessary for having (at least) two vacuum states.

It is not known exactly when the inflationary epoch ended, but it is thought to have been between 10−33 and 10−32 seconds after the Big Bang. The rapid expansion of space meant that any potential elementary particles (or other "unwanted" artifacts, such as topological defects) remaining from the time before inflation were now distributed very thinly across the universe.

When the inflaton field reconfigured itself into the low-energy vacuum state we currently observe, the huge difference in potential energy was released in the form of a dense, hot mixture of quarks, anti-quarks and gluons as it entered the electroweak epoch.

See also

Notes

    Related Research Articles

    <span class="mw-page-title-main">Big Bang</span> Physical theory

    The Big Bang is a physical theory that describes how the universe expanded from an initial state of high density and temperature. It was first proposed as a physical theory in 1931 by Roman Catholic priest and physicist Georges Lemaître when he suggested the universe emerged from a "primeval atom". Various cosmological models of the Big Bang explain the evolution of the observable universe from the earliest known periods through its subsequent large-scale form. These models offer a comprehensive explanation for a broad range of observed phenomena, including the abundance of light elements, the cosmic microwave background (CMB) radiation, and large-scale structure. The uniformity of the universe, known as the flatness problem, is explained through cosmic inflation: a sudden and very rapid expansion of space during the earliest moments.

    <span class="mw-page-title-main">Physical cosmology</span> Branch of cosmology which studies mathematical models of the universe

    Physical cosmology is a branch of cosmology concerned with the study of cosmological models. A cosmological model, or simply cosmology, provides a description of the largest-scale structures and dynamics of the universe and allows study of fundamental questions about its origin, structure, evolution, and ultimate fate. Cosmology as a science originated with the Copernican principle, which implies that celestial bodies obey identical physical laws to those on Earth, and Newtonian mechanics, which first allowed those physical laws to be understood.

    <span class="mw-page-title-main">Cosmic inflation</span> Theory of rapid universe expansion

    In physical cosmology, cosmic inflation, cosmological inflation, or just inflation, is a theory of exponential expansion of space in the very early universe. Following the inflationary period, the universe continued to expand, but at a slower rate. The re-acceleration of this slowing expansion due to dark energy began after the universe was already over 7.7 billion years old.

    <span class="mw-page-title-main">Universe</span> Everything in space and time

    The universe is all of space and time and their contents. It comprises all of existence, any fundamental interaction, physical process and physical constant, and therefore all forms of matter and energy, and the structures they form, from sub-atomic particles to entire galactic filaments. Space and time, according to the prevailing cosmological theory of the Big Bang, emerged together 13.787±0.020 billion years ago, and the universe has been expanding ever since. Today the universe has expanded into an age and size that is physically only in parts observable as the observable universe, which is approximately 93 billion light-years in diameter at the present day, while the spatial size, if any, of the entire universe is unknown.

    <span class="mw-page-title-main">Ultimate fate of the universe</span> Theories about the end of the universe

    The ultimate fate of the universe is a topic in physical cosmology, whose theoretical restrictions allow possible scenarios for the evolution and ultimate fate of the universe to be described and evaluated. Based on available observational evidence, deciding the fate and evolution of the universe has become a valid cosmological question, being beyond the mostly untestable constraints of mythological or theological beliefs. Several possible futures have been predicted by different scientific hypotheses, including that the universe might have existed for a finite and infinite duration, or towards explaining the manner and circumstances of its beginning.

    <span class="mw-page-title-main">Alan Guth</span> American theoretical physicist and cosmologist

    Alan Harvey Guth is an American theoretical physicist and cosmologist who is the Victor Weisskopf Professor of Physics at the Massachusetts Institute of Technology. Along with Alexei Starobinsky and Andrei Linde, he won the 2014 Kavli Prize "for pioneering the theory of cosmic inflation." Guth's research focuses on elementary particle theory and how particle theory is applicable to the early universe.

    <span class="mw-page-title-main">Andrei Linde</span> Russian-American theoretical physicist

    Andrei Dmitriyevich Linde is a Russian-American theoretical physicist and the Harald Trap Friis Professor of Physics at Stanford University.

    The inflaton field is a hypothetical scalar field which is conjectured to have driven cosmic inflation in the very early universe. The field, originally postulated by Alan Guth, provides a mechanism by which a period of rapid expansion from 10−35 to 10−34 seconds after the initial expansion can be generated, forming a universe consistent with observed spatial isotropy and homogeneity.

    The expansion of the universe is parametrized by a dimensionless scale factor. Also known as the cosmic scale factor or sometimes the Robertson–Walker scale factor, this is a key parameter of the Friedmann equations.

    <span class="mw-page-title-main">Flatness problem</span> Cosmological fine-tuning problem

    The flatness problem is a cosmological fine-tuning problem within the Big Bang model of the universe. Such problems arise from the observation that some of the initial conditions of the universe appear to be fine-tuned to very 'special' values, and that small deviations from these values would have extreme effects on the appearance of the universe at the current time.

    <span class="mw-page-title-main">False vacuum</span> Hypothetical vacuum, less stable than true vacuum

    In quantum field theory, a false vacuum is a hypothetical vacuum state that is locally stable but does not occupy the most stable possible ground state. In this condition it is called metastable. It may last for a very long time in this state, but could eventually decay to the more stable one, an event known as false vacuum decay. The most common suggestion of how such a decay might happen in our universe is called bubble nucleation – if a small region of the universe by chance reached a more stable vacuum, this "bubble" would spread.

    <span class="mw-page-title-main">Paul Steinhardt</span> American theoretical physicist (born 1952)

    Paul Joseph Steinhardt is an American theoretical physicist whose principal research is in cosmology and condensed matter physics. He is currently the Albert Einstein Professor in Science at Princeton University, where he is on the faculty of both the Departments of Physics and of Astrophysical Sciences.

    Eternal inflation is a hypothetical inflationary universe model, which is itself an outgrowth or extension of the Big Bang theory.

    <span class="mw-page-title-main">Electroweak epoch</span> Period in the evolution of the early universe

    In physical cosmology, the electroweak epoch was the period in the evolution of the early universe when the temperature of the universe had fallen enough that the strong force separated from the electronuclear interaction, but was high enough for electromagnetism and the weak interaction to remain merged into a single electroweak interaction above the critical temperature for electroweak symmetry breaking. Some cosmologists place the electroweak epoch at the start of the inflationary epoch, approximately 10−36 seconds after the Big Bang. Others place it at approximately 10−32 seconds after the Big Bang when the potential energy of the inflaton field that had driven the inflation of the universe during the inflationary epoch was released, filling the universe with a dense, hot quark–gluon plasma. Particle interactions in this phase were energetic enough to create large numbers of exotic particles, including W and Z bosons and Higgs bosons. As the universe expanded and cooled, interactions became less energetic and when the universe was about 10−12 seconds old, W and Z bosons ceased to be created at observable rates. The remaining W and Z bosons decayed quickly, and the weak interaction became a short-range force in the following quark epoch.

    <span class="mw-page-title-main">Grand unification epoch</span> Period very shortly after the Big Bang

    In physical cosmology, assuming that nature is described by a Grand Unified Theory, the grand unification epoch was the period in the evolution of the early universe following the Planck epoch, starting at about 10−43 seconds after the Big Bang, in which the temperature of the universe was comparable to the characteristic temperatures of grand unified theories. If the grand unification energy is taken to be 1015 GeV, this corresponds to temperatures higher than 1027 K. During this period, three of the four fundamental interactions — electromagnetism, the strong interaction, and the weak interaction — were unified as the electronuclear force. Gravity had separated from the electronuclear force at the end of the Planck era. During the grand unification epoch, physical characteristics such as mass, charge, flavour and colour charge were meaningless.

    <span class="mw-page-title-main">Expansion of the universe</span> Increase in distance between parts of the universe over time

    The expansion of the universe is the increase in distance between gravitationally unbound parts of the observable universe with time. It is an intrinsic expansion, so it does not mean that the universe expands "into" anything or that space exists "outside" it. To any observer in the universe, it appears that all but the nearest galaxies recede at speeds that are proportional to their distance from the observer, on average. While objects cannot move faster than light, this limitation applies only with respect to local reference frames and does not limit the recession rates of cosmologically distant objects.

    <span class="mw-page-title-main">Chronology of the universe</span> History and future of the universe

    The chronology of the universe describes the history and future of the universe according to Big Bang cosmology.

    <span class="mw-page-title-main">Cosmological constant problem</span> Concept in cosmology

    In cosmology, the cosmological constant problem or vacuum catastrophe is the substantial disagreement between the observed values of vacuum energy density and the much larger theoretical value of zero-point energy suggested by quantum field theory.

    The curvaton is a hypothetical elementary particle which mediates a scalar field in early universe cosmology. It can generate fluctuations during inflation, but does not itself drive inflation, instead it generates curvature perturbations at late times after the inflaton field has decayed and the decay products have redshifted away, when the curvaton is the dominant component of the energy density. It is used to generate a flat spectrum of CMB perturbations in models of inflation where the potential is otherwise too steep or in alternatives to inflation like the pre-Big Bang scenario.

    References