Intermediate polar

Last updated
Diagram of an intermediate polar. Matter flows from the companion star into an accretion disk around the white dwarf, but is disrupted by the white dwarf's magnetic field. Intermediate polar.gif
Diagram of an intermediate polar. Matter flows from the companion star into an accretion disk around the white dwarf, but is disrupted by the white dwarf's magnetic field.

In astronomy, an intermediate polar (also called a DQ Herculis Star) is a type of cataclysmic variable, binary star system with a white dwarf and a cool main-sequence secondary star. In most cataclysmic variables, matter from the companion star is gravitationally stripped by the compact star and forms an accretion disk around it. In intermediate polar systems, the same general scenario applies except that the inner disk is disrupted by the magnetic field of the white dwarf.

Contents

The name "intermediate polar" is derived from the strength of the white dwarf's magnetic field, which is between that of non-magnetic cataclysmic variable systems and strongly magnetic systems. Non-magnetic systems exhibit full accretion disks, while strongly magnetic systems (called polars or AM Herculis systems) exhibit only accretion streams which directly impact the white dwarf's magnetosphere.

There were 26 confirmed intermediate polar systems as of 14 April 2006. This represents about 1% of the 1,830 total cataclysmic variable systems presented by Downes et al. (2006) in the Catalog of Cataclysmic Variables. Only two of them are brighter than 15th magnitude at minimum: the prototype DQ Herculis, and the unusual slow nova, GK Persei. [1]

System structure

In intermediate polar systems, material stripped from a red dwarf secondary star flows into an accretion disk around the white dwarf, but the inner disk is truncated by the magnetic field of the white dwarf. In extreme instances, the disk can be fully disrupted, although this is uncommon. [2] In the region where the disk is truncated, the gas in the disk begins to travel along the white dwarf's magnetic field lines, forming curved sheets of luminous material called accretion curtains. [3] Disk material passes through the curtains and then accretes onto the white dwarf near one of its magnetic poles.

Physical Properties

Intermediate polar systems are strong x-ray emitters. The x-rays are generated by high velocity particles from the accretion stream forming a shock as they fall onto the surface of the white dwarf star. As particles decelerate and cool before hitting the white dwarf surface, bremsstrahlung x-rays are produced and may subsequently be absorbed by gas surrounding the shock region.

The magnetic field strength of white dwarfs in intermediate polar systems are typically 1 million to 10 million gauss (100–1000 teslas). This is about a million times stronger than the Earth's magnetic field and towards the upper limit of magnetic field strengths that can be produced in a laboratory on Earth, but is much less than the magnetic field strength of neutron stars. At the intersection of the accretion stream and the surface of the white dwarf, a hot spot is produced. Because the white dwarf has a dipole magnetic field, it will have one hot spot at each of its magnetic poles. As the white dwarf and its dipole magnetic field spin, the hot spots will spin also.

Other defining characteristics of intermediate polars include a strong Helium II emission line at 468.6 nm and circular polarization, in addition to the light curve periodicities described below.

Light curve periodicities

The light curve of an intermediate polar may show several types of stable periodic changes in brightness. One periodicity is related to the orbital period of the binary star system. The orbital periods of confirmed intermediate polars range from 1.4 to 48 hours, with typical values between 3 and 6 hours.

A second periodic signal originates from the rotation of the white dwarf spinning on its axis. The observational characteristic that most clearly defines an intermediate polar is the existence of a spin period signal that is shorter than the orbital period. The known periods range from 33 to 4022 seconds. The physical cause of optical spin-period oscillations is usually attributed to the changing viewing aspect of the accretion curtain as it converges near the white dwarf. [4]

A third light curve periodicity, the sideband period between the spin period and the orbital period, is also often present.

All three periodic signals may be measured by taking a fourier transform of the light curve and producing a power spectrum. Intermediate polars produce spin and sideband periodicities in x-ray, ultraviolet, and optical wavelengths. Although the source of the periods in all three wavelengths is ultimately the white dwarf spin, the exact mechanisms for producing the high-energy periodicities and the optical periodicities are thought to be different.

In addition to the stable oscillations, unstable oscillations called "quasi-periodic oscillations" may appear and then die off after a few cycles. Quasi-periodic oscillations typically have periods between 30 and 300 seconds.

Related Research Articles

<span class="mw-page-title-main">Cataclysmic variable star</span> Stars with irregular large fluctuations in brightness

In astronomy, cataclysmic variable stars (CVs) are stars which irregularly increase in brightness by a large factor, then drop back down to a quiescent state. They were initially called novae, since ones with an outburst brightness visible to the naked eye and an invisible quiescent brightness appeared as new stars in the sky.

<span class="mw-page-title-main">DQ Herculis</span> Nova in the constellation Hercules

DQ Herculis, or Nova Herculis 1934, was a slow, bright nova occurring in the northern constellation of Hercules in December 1934. This cataclysmic variable star was discovered on 13 December 1934 by J. P. M. Prentice from Stowmarket, Suffolk. It reached peak brightness on 22 December 1934 with an apparent magnitude of 1.5. The nova remained visible to the naked eye for several months.

<span class="mw-page-title-main">Polar (star)</span> Highly magnetic type of cataclysmic variable binary star system

In astronomy, a polar is a highly magnetic type of cataclysmic variable (CV) binary star system, originally known as an AM Herculis star after the prototype member AM Herculis. Like other CVs, polars contain two stars: an accreting white dwarf (WD), and a low-mass donor star which is transferring mass to the WD as a result of the WD's gravitational pull, overflowing its Roche lobe. Polars are distinguished from other CVs by the presence of a very strong magnetic field in the WD. Typical magnetic field strengths of polar systems are 10 million to 80 million gauss. The WD in the polar AN Ursae Majoris has the strongest known magnetic field among cataclysmic variables, with a field strength of 230 million gauss.

<span class="mw-page-title-main">Dwarf nova</span>

A U Geminorum-type variable star, or dwarf nova is one of several types of cataclysmic variable star, consisting of a close binary star system in which one of the components is a white dwarf that accretes matter from its companion. Dwarf novae are dimmer and repeat more frequently than "classical" novae.

<span class="mw-page-title-main">AM Herculis</span> Star in the constellation Hercules

AM Herculis is a binary variable star located in the constellation Hercules. This star, along with the star AN Ursae Majoris, is the prototype for a category of cataclysmic variable stars called polars, or AM Her type stars.

<span class="mw-page-title-main">AE Aquarii</span> Star in the constellation Aquarius

AE Aquarii is a cataclysmic variable binary star of the DQ Herculis type. Based upon parallax measurements, the system is located at a distance of about 280 light-years from the Earth. Because of its unique properties, this system has been subject to a number of scientific studies. The white dwarf in the AE Aquarii system is the first star of its type known to give off pulsar-like pulsations that are powered by its rotation and particle acceleration.

<span class="mw-page-title-main">EX Hydrae</span> Cataclysmic binary star system in the constellation Hydra

EX Hydrae is a variable star classified as an eclipsing intermediate polar-type cataclysmic variable, specifically of the DQ Herculis type. The system varies in apparent magnitude from 9.6 to 14. The system consists of a white dwarf primary and an M-type secondary, of masses of 0.4–0.7 M and 0.07–0.10 M respectively. The orbital period is 98.25696 minutes (0.068233846 days). The system is 65±11 parsecs distant, making EX Hya one of the closest cataclysmic variable stars. The cataclysmic outbursts appear to be caused by accretion of material from the M-star to the white dwarf.

<span class="mw-page-title-main">CE Gruis</span> Binary star system in the constellation Grus

CE Gruis is a faint binary star system in the constellation Grus. It is a variable star, with a B-band brightness that ranges from a peak magnitude of 17.4 down to a minimum of 19.5 over a period of 108.6 minutes. The system is composed of a white dwarf and donor star, locked into a close, synchronous orbit. In such systems, known as polars, material from the donor star does not form an accretion disc around the white dwarf because of its intense magnetic field, but rather streams directly onto it along columns.

<span class="mw-page-title-main">QS Telescopii</span> Binary star system in the constellation Telescopium

QS Telescopii is a faint, well-studied binary star system in the southern constellation Telescopium. It is composed of a white dwarf and main sequence donor star, locked into a close, circular orbit facing one another. Known as polars, material from the donor star does not form an accretion disk around the white dwarf, but rather streams directly onto it. This is due to the presence of the white dwarf's strong magnetic field. The pair undergo frequent shifts between a high and low accretion states, and it shifts between single and double accretion poles. The main pole is partially self-eclipsing.

SW Sextantis variable stars are a kind of cataclysmic variable star; they are double-star systems in which there is mass transfer from a red dwarf to a white dwarf forming a stable accretion disc around the latter. Unlike other non-magnetic cataclysmic variables, the emission lines from hydrogen and helium are not doubled, except briefly near phase 0.5.

<span class="mw-page-title-main">V4743 Sagittarii</span> Nova that appeared in 2002

V4743 Sagittarii was a bright nova in the southern constellation of Sagittarius. This event was discovered by K. Haseda and colleagues in September 2002. It peaked at magnitude 5.0 on September 20, 2002, then declined rapidly thereafter. It reached a peak temperature of 740,000 K around April 2003 and remained at that level for at least five months, suggesting the white dwarf component has a mass of 1.1–1.2 M. The distance to this system is uncertain. Infrared observations indicate a distance of approximately 21 kly (6.3 kpc). A derivation using maximum magnitude rate of decay showed a distance of 12.7 ± 1.0 kly (3.9 ± 0.3 kpc).

<span class="mw-page-title-main">Superhump</span>

In astronomy, a superhump is a periodic brightness variation in a cataclysmic variable star system, with a period within a few percent of the orbital period of the system.

<span class="mw-page-title-main">V455 Andromedae</span> Dwarf nova star in the constellation Andromeda

V455 Andromedae is a dwarf nova in the constellation Andromeda. It has a typical apparent visual magnitude of 16.5, but reached a magnitude of 8.5 during the only observed outburst.

<span class="mw-page-title-main">UZ Fornacis</span> Binary star system in the constellation Fornax

UZ Fornacis is a binary star in the constellation of Fornax. It appears exceedingly faint with a maximum apparent magnitude 17.0. Its distance, as measured by Gaia using the parallax method, is about 780 light-years.

<span class="mw-page-title-main">GI Monocerotis</span> 1918 Nova in the constellation Monoceros

GI Monocerotis, also known as Nova Monocerotis 1918, was a nova that erupted in the constellation Monoceros during 1918. It was discovered by Max Wolf on a photographic plate taken at the Heidelberg Observatory on 4 February 1918. At the time of its discovery, it had a photographic magnitude of 8.5, and had already passed its peak brightness. A search of plates taken at the Harvard College Observatory showed that it had a photographic magnitude of 5.4 on 1 January 1918, so it would have been visible to the naked eye around that time. By March 1918 it had dropped to ninth or tenth magnitude. By November 1920 it was a little fainter than 15th magnitude.

<span class="mw-page-title-main">UX Ursae Majoris</span>

UX Ursae Majoris is an Algol type binary star system in the northern circumpolar constellation of Ursa Major. It is classified as a nova-like variable star similar to DQ Herculis, although no eruptions have been reported. Since its discovery in 1933, this system has been the subject of numerous studies attempting to determine its properties. The combined apparent visual magnitude of UX UMa ranges from 12.57 down to 14.15. The system is located at a distance of approximately 952 light years from the Sun based on parallax, and is drifting further away with a radial velocity of 112 km/s.

<span class="mw-page-title-main">BZ Ursae Majoris</span> Dwarf Nova in the constellation Ursa Major

BZ Ursae Majoris is a dwarf nova star system in the northern circumpolar constellation of Ursa Major. It consists of a white dwarf primary in a close orbit with a red dwarf. The latter star is donating mass, which is accumulating in an accretion disk orbiting the white dwarf. The system is located at a distance of approximately 505 light years from the Sun based on parallax measurements.

<span class="mw-page-title-main">BG Canis Minoris</span> Variable star in the constellation of Canis Minor

BG Canis Minoris is a binary star system in the equatorial constellation of Canis Minor, abbreviated BG CMi. With an apparent visual magnitude that fluctuates around 14.5, it is much too faint to be visible to the naked eye. Parallax measurements provide a distance estimate of approximately 2,910 light years from the Sun.

<span class="mw-page-title-main">QQ Vulpeculae</span> Variable star in the constellation Vulpecula

QQ Vulpeculae is a cataclysmic variable binary star system in the northern constellation of Vulpecula, abbreviated QQ Vul. It has a brightness that fluctuates around an apparent visual magnitude of 14.7, which is too faint to be viewed with the naked eye. The distance to this system is approximately 981 light years based on parallax measurements.

<span class="mw-page-title-main">SW Ursae Majoris</span> Variable star in the constellation Ursa Major

SW Ursae Majoris is a cataclysmic binary star system in the northern circumpolar constellation of Ursa Major, abbreviated SW UMa. During quiescence it has an apparent visual magnitude of 16.5–17, which is too faint to be visible to the naked eye. Based on parallax measurements, it is located at a distance of approximately 526 light years from the Sun.

References

  1. "Catalog of Cataclysmic Variables" . Retrieved 2018-01-17.
  2. Buckley, D. A. H.; Sekiguchi, K.; Motch, C.; O'Donoghue, D.; Chen, A.-L.; Schwarzenberg-Czerny, A.; Pietsch, W.; Harrop-Allin, M. K. (1995-08-15). "RX J1712.6-2414: a polarized intermediate polar from the ROSAT Galactic Plane Survey". Monthly Notices of the Royal Astronomical Society. 275 (4): 1028–1048. Bibcode:1995MNRAS.275.1028B. doi: 10.1093/mnras/275.4.1028 . ISSN   0035-8711.
  3. Patterson, Joseph (1994-03-01). "The DQ Herculis stars". Publications of the Astronomical Society of the Pacific. 106 (697): 209. Bibcode:1994PASP..106..209P. doi: 10.1086/133375 . ISSN   1538-3873.
  4. Hellier, C.; Mason, K. O.; Rosen, S. R.; Cordova, F. A. (1987-09-01). "Time resolved optical spectroscopy of the eclipsing intermediate polar EX Hydrae". Monthly Notices of the Royal Astronomical Society. 228 (2): 463–481. Bibcode:1987MNRAS.228..463H. doi: 10.1093/mnras/228.2.463 . ISSN   0035-8711.