Quantum field theory |
---|
History |
Lattice QCD is a well-established non-perturbative approach to solving the quantum chromodynamics (QCD) theory of quarks and gluons. It is a lattice gauge theory formulated on a grid or lattice of points in space and time. When the size of the lattice is taken infinitely large and its sites infinitesimally close to each other, the continuum QCD is recovered. [1] [2]
Analytic or perturbative solutions in low-energy QCD are hard or impossible to obtain due to the highly nonlinear nature of the strong force and the large coupling constant at low energies. This formulation of QCD in discrete rather than continuous spacetime naturally introduces a momentum cut-off at the order 1/a, where a is the lattice spacing, which regularizes the theory. As a result, lattice QCD is mathematically well-defined. Most importantly, lattice QCD provides a framework for investigation of non-perturbative phenomena such as confinement and quark–gluon plasma formation, which are intractable by means of analytic field theories.
In lattice QCD, fields representing quarks are defined at lattice sites (which leads to fermion doubling), while the gluon fields are defined on the links connecting neighboring sites. This approximation approaches continuum QCD as the spacing between lattice sites is reduced to zero. Because the computational cost of numerical simulations can increase dramatically as the lattice spacing decreases, results are often extrapolated to a = 0 by repeated calculations at different lattice spacings a that are large enough to be tractable.
Numerical lattice QCD calculations using Monte Carlo methods can be extremely computationally intensive, requiring the use of the largest available supercomputers. To reduce the computational burden, the so-called quenched approximation can be used, in which the quark fields are treated as non-dynamic "frozen" variables. While this was common in early lattice QCD calculations, "dynamical" fermions are now standard. [3] These simulations typically utilize algorithms based upon molecular dynamics or microcanonical ensemble algorithms. [4] [5]
At present, lattice QCD is primarily applicable at low densities where the numerical sign problem does not interfere with calculations. Monte Carlo methods are free from the sign problem when applied to the case of QCD with gauge group SU(2) (QC2D).
Lattice QCD has already successfully agreed with many experiments. For example, the mass of the proton has been determined theoretically with an error of less than 2 percent. [6] Lattice QCD predicts that the transition from confined quarks to quark–gluon plasma occurs around a temperature of 150 MeV (1.7×1012 K ), within the range of experimental measurements. [7] [8]
Lattice QCD has also been used as a benchmark for high-performance computing, an approach originally developed in the context of the IBM Blue Gene supercomputer. [9]
Monte-Carlo is a method to pseudo-randomly sample a large space of variables. The importance sampling technique used to select the gauge configurations in the Monte-Carlo simulation imposes the use of Euclidean time, by a Wick rotation of spacetime.
In lattice Monte-Carlo simulations the aim is to calculate correlation functions. This is done by explicitly calculating the action, using field configurations which are chosen according to the distribution function, which depends on the action and the fields. Usually one starts with the gauge bosons part and gauge-fermion interaction part of the action to calculate the gauge configurations, and then uses the simulated gauge configurations to calculate hadronic propagators and correlation functions.
Lattice QCD is a way to solve the theory exactly from first principles, without any assumptions, to the desired precision. However, in practice the calculation power is limited, which requires a smart use of the available resources. One needs to choose an action which gives the best physical description of the system, with minimum errors, using the available computational power. The limited computer resources force one to use approximate physical constants which are different from their true physical values:
In order to compensate for the errors one improves the lattice action in various ways, to minimize mainly finite spacing errors.
In lattice perturbation theory the scattering matrix is expanded in powers of the lattice spacing, a. The results are used primarily to renormalize Lattice QCD Monte-Carlo calculations. In perturbative calculations both the operators of the action and the propagators are calculated on the lattice and expanded in powers of a. When renormalizing a calculation, the coefficients of the expansion need to be matched with a common continuum scheme, such as the MS-bar scheme, otherwise the results cannot be compared. The expansion has to be carried out to the same order in the continuum scheme and the lattice one.
The lattice regularization was initially introduced by Wilson as a framework for studying strongly coupled theories non-perturbatively. However, it was found to be a regularization suitable also for perturbative calculations. Perturbation theory involves an expansion in the coupling constant, and is well-justified in high-energy QCD where the coupling constant is small, while it fails completely when the coupling is large and higher order corrections are larger than lower orders in the perturbative series. In this region non-perturbative methods, such as Monte-Carlo sampling of the correlation function, are necessary.
Lattice perturbation theory can also provide results for condensed matter theory. One can use the lattice to represent the real atomic crystal. In this case the lattice spacing is a real physical value, and not an artifact of the calculation which has to be removed (a UV regulator), and a quantum field theory can be formulated and solved on the physical lattice.
The U(1), SU(2), and SU(3) lattice gauge theories can be reformulated into a form that can be simulated using "spin qubit manipulations" on a universal quantum computer. [10]
The method suffers from a few limitations:
In theoretical physics, quantum chromodynamics (QCD) is the study of the strong interaction between quarks mediated by gluons. Quarks are fundamental particles that make up composite hadrons such as the proton, neutron and pion. QCD is a type of quantum field theory called a non-abelian gauge theory, with symmetry group SU(3). The QCD analog of electric charge is a property called color. Gluons are the force carriers of the theory, just as photons are for the electromagnetic force in quantum electrodynamics. The theory is an important part of the Standard Model of particle physics. A large body of experimental evidence for QCD has been gathered over the years.
The Standard Model of particle physics is the theory describing three of the four known fundamental forces in the universe and classifying all known elementary particles. It was developed in stages throughout the latter half of the 20th century, through the work of many scientists worldwide, with the current formulation being finalized in the mid-1970s upon experimental confirmation of the existence of quarks. Since then, proof of the top quark (1995), the tau neutrino (2000), and the Higgs boson (2012) have added further credence to the Standard Model. In addition, the Standard Model has predicted various properties of weak neutral currents and the W and Z bosons with great accuracy.
In quantum chromodynamics (QCD), color confinement, often simply called confinement, is the phenomenon that color-charged particles cannot be isolated, and therefore cannot be directly observed in normal conditions below the Hagedorn temperature of approximately 2 terakelvin. Quarks and gluons must clump together to form hadrons. The two main types of hadron are the mesons and the baryons. In addition, colorless glueballs formed only of gluons are also consistent with confinement, though difficult to identify experimentally. Quarks and gluons cannot be separated from their parent hadron without producing new hadrons.
In quantum field theory, asymptotic freedom is a property of some gauge theories that causes interactions between particles to become asymptotically weaker as the energy scale increases and the corresponding length scale decreases.
In physics, lattice gauge theory is the study of gauge theories on a spacetime that has been discretized into a lattice.
In particle physics, a glueball is a hypothetical composite particle. It consists solely of gluon particles, without valence quarks. Such a state is possible because gluons carry color charge and experience the strong interaction between themselves. Glueballs are extremely difficult to identify in particle accelerators, because they mix with ordinary meson states. In pure gauge theory, glueballs are the only states of the spectrum and some of them are stable.
Hadronization is the process of the formation of hadrons out of quarks and gluons. There are two main branches of hadronization: quark-gluon plasma (QGP) transformation and colour string decay into hadrons. The transformation of quark-gluon plasma into hadrons is studied in lattice QCD numerical simulations, which are explored in relativistic heavy-ion experiments. Quark-gluon plasma hadronization occurred shortly after the Big Bang when the quark–gluon plasma cooled down to the Hagedorn temperature when free quarks and gluons cannot exist. In string breaking new hadrons are forming out of quarks, antiquarks and sometimes gluons, spontaneously created from the vacuum.
In particle physics, quarkonium is a flavorless meson whose constituents are a heavy quark and its own antiquark, making it both a neutral particle and its own antiparticle. The name "quarkonium" is analogous to positronium, the bound state of electron and anti-electron. The particles are short-lived due to matter-antimatter annihilation.
Quark matter or QCD matter refers to any of a number of hypothetical phases of matter whose degrees of freedom include quarks and gluons, of which the prominent example is quark-gluon plasma. Several series of conferences in 2019, 2020, and 2021 were devoted to this topic.
The QCD vacuum is the quantum vacuum state of quantum chromodynamics (QCD). It is an example of a non-perturbative vacuum state, characterized by non-vanishing condensates such as the gluon condensate and the quark condensate in the complete theory which includes quarks. The presence of these condensates characterizes the confined phase of quark matter.
In lattice field theory, the quenched approximation is an approximation often used in lattice gauge theory in which the quantum loops of fermions in Feynman diagrams are neglected. Equivalently, the corresponding one-loop determinants are set to one. This approximation is often forced upon the physicists because the calculation with the Grassmann numbers is computationally very difficult in lattice gauge theory.
In particle physics, the parton model is a model of hadrons, such as protons and neutrons, proposed by Richard Feynman. It is useful for interpreting the cascades of radiation produced from quantum chromodynamics (QCD) processes and interactions in high-energy particle collisions.
In theoretical physics, the anti-de Sitter/quantum chromodynamics correspondence is a goal to describe quantum chromodynamics (QCD) in terms of a dual gravitational theory, following the principles of the AdS/CFT correspondence in a setup where the quantum field theory is not a conformal field theory.
In applied mathematics, the numerical sign problem is the problem of numerically evaluating the integral of a highly oscillatory function of a large number of variables. Numerical methods fail because of the near-cancellation of the positive and negative contributions to the integral. Each has to be integrated to very high precision in order for their difference to be obtained with useful accuracy.
In strong interaction physics, light front holography or light front holographic QCD is an approximate version of the theory of quantum chromodynamics (QCD) which results from mapping the gauge theory of QCD to a higher-dimensional anti-de Sitter space (AdS) inspired by the AdS/CFT correspondence proposed for string theory. This procedure makes it possible to find analytic solutions in situations where strong coupling occurs, improving predictions of the masses of hadrons and their internal structure revealed by high-energy accelerator experiments. The most widely used approach to finding approximate solutions to the QCD equations, lattice QCD, has had many successful applications; however, it is a numerical approach formulated in Euclidean space rather than physical Minkowski space-time.
The proton spin crisis is a theoretical crisis precipitated by a 1987 experiment by the European Muon Collaboration (EMC), which tried to determine the distribution of spin within the proton.
The light-front quantization of quantum field theories provides a useful alternative to ordinary equal-time quantization. In particular, it can lead to a relativistic description of bound systems in terms of quantum-mechanical wave functions. The quantization is based on the choice of light-front coordinates, where plays the role of time and the corresponding spatial coordinate is . Here, is the ordinary time, is a Cartesian coordinate, and is the speed of light. The other two Cartesian coordinates, and , are untouched and often called transverse or perpendicular, denoted by symbols of the type . The choice of the frame of reference where the time and -axis are defined can be left unspecified in an exactly soluble relativistic theory, but in practical calculations some choices may be more suitable than others. The basic formalism is discussed elsewhere.
The light-front quantization of quantum field theories provides a useful alternative to ordinary equal-time quantization. In particular, it can lead to a relativistic description of bound systems in terms of quantum-mechanical wave functions. The quantization is based on the choice of light-front coordinates, where plays the role of time and the corresponding spatial coordinate is . Here, is the ordinary time, is one Cartesian coordinate, and is the speed of light. The other two Cartesian coordinates, and , are untouched and often called transverse or perpendicular, denoted by symbols of the type . The choice of the frame of reference where the time and -axis are defined can be left unspecified in an exactly soluble relativistic theory, but in practical calculations some choices may be more suitable than others.
In nuclear physics, ab initio methods seek to describe the atomic nucleus from the bottom up by solving the non-relativistic Schrödinger equation for all constituent nucleons and the forces between them. This is done either exactly for very light nuclei or by employing certain well-controlled approximations for heavier nuclei. Ab initio methods constitute a more fundamental approach compared to e.g. the nuclear shell model. Recent progress has enabled ab initio treatment of heavier nuclei such as nickel.
In particle physics, the Cornell potential is an effective method to account for the confinement of quarks in quantum chromodynamics (QCD). It was developed by Estia J. Eichten, Kurt Gottfried, Toichiro Kinoshita, John Kogut, Kenneth Lane and Tung-Mow Yan at Cornell University in the 1970s to explain the masses of quarkonium states and account for the relation between the mass and angular momentum of the hadron. The potential has the form: