NGC 2366

Last updated
NGC 2366
NGC 2366 2363 GALEX WikiSky.jpg
GALEX image of NGC 2366
Observation data (J2000 epoch)
Constellation Camelopardalis
Right ascension 7h 28m 54.6s [1]
Declination +69° 12 57 [1]
Redshift 80 ± 1 km/s [1]
Distance 10 million light-years [2]
Apparent magnitude  (V)11.4 [1]
Characteristics
Type IB(s)m [1]
Apparent size  (V)8.1 × 3.3 [1]
Notable featuresThe southern part of NGC 2366 is called Markarian 71.
Other designations
UGC 3851, PGC 21102 [1]

NGC 2366 is a Magellanic barred irregular dwarf galaxy located in the constellation Camelopardalis. [3] [4]

Contents

There has been confusion about the various components of NGC 2366 and its neighbouring galaxy NGC 2363. [3] At the southern end of NGC 2366 is the large, luminous HII region known as Markarian 71 (Mrk 71). [3]

To the west of Mrk 71 is another dwarf galaxy NGC 2363 which is interacting with NGC 2366. [5] Corwins' notes remarks that there are two galaxies with two NGC numbers clearly attached to each one. "We shall just have to get used to calling the HII region "Markarian 71" (or one of its other names) since it is not N2363 as we've thought all these years." [5]

Within the region known as Mrk 71, there are two super star clusters (SSC) which are named 'A' and 'B' or 'Knot A' and 'Knot B'. [3] [6]

Other names for the above components include: NGC 2366-I, NGC 2366-II, NGC 2366-III, NGC2366-A, NGC 2366-B, NGC 2366-C, NGC 2363-A, NGC 2363-B. [3]

NGC 2366 is an outlying member of the M81 Group. [7]

Super star clusters within Mrk 71

HST view of NGC 2366 Hubble view of NGC 2366 - Heic1207a.jpg
HST view of NGC 2366

NGC/Mrk71 is home to numerous young, gigantic blue stars, which in gas-rich star-forming regions, emit ultraviolet radiation that excites the hydrogen gas, making it glow. At a distance of approximately 10 million light years, it is close enough for astronomers to discern its individual stars. [2]

Within Mrk 71 there are two super star clusters which will be referred to as Mrk 71 knot A (Knot A) and Mrk 71 knot B (Knot B).

Knot A has total stellar mass of approximately 1.3–1.4 x 10^5 solar masses. [3]

The absence of Wolf-Rayet stars in its spectra might well indicate that its age is no more than 3 Myrs, while an age of less than 1 Myr is given in a study by Drissen et al. 2000. [8]

Knot A hosts a massive, enshrouded SSC in which no stellar features have been confirmed and that is still in its natal cloud. [3]

The hydrogen alpha luminosity measurement for Mrk 71, of which 90% is produced by Knot A, is given as 8.4 x 10^39 ergs/s in a study by James et al. 2016. [9]

Knot A might well contain 'very massive stars' (VMS), which are O-type supergiants of 150-300 solar masses. These have short lifespans of 1-3 Myr and have been suggested as a reason why there are extreme stellar temperatures. [9]

Knot B has a lower mass of 1.5 x 10^4 solar masses and an estimated age of 3–5 Myrs. [3]

UV spectral synthesis leads to the conclusion that there are approximately 800 B and 40 O stars present. [8]

Studies indicate that there might be up to 8 Wolf-Rayet stars present, which would set the age between 3–5 Myrs. [8] [10]

A superbubble appears to have been generated with strong shell morphology to the east and a blow-out region to the north, with expansion velocities of approximately 20 km/s. This is consistent with the substantial mechanical feedback generated by a massive, somewhat evolved SSC. [3]

The Nearest Green Pea Analog

In August 2017, a study was published in The Astrophysical Journal called: "Mrk 71/NGC 2366: The Nearest Green Pea Analog". This examines the links between NGC 2366 and the so-called Green Pea galaxies (GPs), some of which have recently been shown to be Lyman Continuum Emitters (LCEs). It presents a remarkable and serendipitous discovery that NGC 2366 is an excellent analog of the GPs. As NGC 2366 is located only 10 million light years away, it might provide a local example of an LCE. [3]

Finding LCEs is crucial in the study of the Big Bang, as Lyman continuum photons (LyC) emissions are thought to be a mechanism for the reionisation of the Universe. [11] [12]

5 'extreme' GPs have recently been shown to be viable LCEs, with a LyC escape fraction of between 6-13%. This discovery doubled the number of low-redshift star-forming LCEs, which have been notoriously hard to detect. [3]

Table 1 in Micheva et al. compares various properties of 'average' and 'extreme' GPs with NGC 2366/Mrk 71 using the wealth of existing data. [3]

Some examples are:

i) The temperature of [OIII] (highly ionised oxygen) in extreme GPs is given as approximately 13,400 – 15500 K, compared with values of between 14,000 and 16,000 K for the Mrk 71 components. [10] [6]

ii) An extremely high equivalent width for [OIII] is shown in Knot A of 224.3 + or − 34.5 nm, compared with values of 80–200 nm for extreme GPs. [13]

iii) The ratio of oxygen to hydrogen, which gives a value for an object's metallicity, is 7.89 in NGC 2263/MRK 71 and between 7.76-8.04 for extreme GPs. [13]

The study concludes that NGC2366/Mrk 71 offers an unprecedentedly detailed look at the morphology and physical conditions of a potential LyC emitter, suggesting that LCEs might be numerous and commonplace. [3]

Dense CO in Mrk 71-A

A study named: "Dense CO in Mrk 71-A: Superwind Suppressed in a Young Super Star Cluster" was published in the Astrophysical Journal Letters in November 2017. [14] One conclusion is: (quoting) "Since Mrk 71-A is a candidate Lyman continuum emitter, this implies that energy-driven superwinds may not be a necessary condition for the escape of ionizing radiation." [14]

Observations were made using the Northern Extended Millimeter Array (NOEMA) telescope, looking for carbon monoxide. [14] It revealed a compact, ~7 parsec molecular cloud. [14]

See also

Related Research Articles

<span class="mw-page-title-main">Globular cluster</span> Spherical collection of stars

A globular cluster is a spheroidal conglomeration of stars that is bound together by gravity, with a higher concentration of stars towards its center. It can contain anywhere from tens of thousands to many millions of member stars, all orbiting in a stable, compact formation. Globular clusters are similar in form to dwarf spheroidal galaxies, and the distinction between the two is not always clear. Their name is derived from Latin globulus. Globular clusters are occasionally known simply as "globulars".

<span class="mw-page-title-main">Local Group</span> Group of galaxies that includes the Milky Way

The Local Group is the galaxy group that includes the Milky Way, where Earth is located. It has a total diameter of roughly 3 megaparsecs (10 million light-years; 9×1019 kilometres), and a total mass of the order of 2×1012 solar masses (4×1042 kg). It consists of two collections of galaxies in a "dumbbell" shape; the Milky Way and its satellites form one lobe, and the Andromeda Galaxy and its satellites constitute the other. The two collections are separated by about 800 kiloparsecs (3×10^6 ly; 2×1019 km) and are moving toward one another with a velocity of 123 km/s. The group itself is a part of the larger Virgo Supercluster, which may be a part of the Laniakea Supercluster. The exact number of galaxies in the Local Group is unknown as some are occluded by the Milky Way; however, at least 80 members are known, most of which are dwarf galaxies.

<span class="mw-page-title-main">IC 10</span> Irregular starburst galaxy in the constellation Cassiopeia

IC 10 is an irregular galaxy in the constellation Cassiopeia. It was discovered by Lewis Swift in 1887 and in 1935 Nicholas Mayall became the first to suggest that the object is extragalactic. Edwin Hubble suspected it might belong to the Local Group of galaxies, but its status remained uncertain for decades. The radial velocity of IC 10 was measured in 1962, and it was found to be approaching the Milky Way at approximately 350 km/s, strengthening the evidence for its membership in the Local Group. Its membership in the group was finally confirmed in 1996 by direct measurements of its distance based on observations of Cepheids; most estimates place the galaxy 2–3 million light years from Earth, with some estimates ranging from 1.5–4.5 million light years. Despite its closeness, the galaxy is rather difficult to study because it lies near the plane of the Milky Way and is therefore heavily obscured by interstellar matter.

<span class="mw-page-title-main">Starburst galaxy</span> Galaxy undergoing an exceptionally high rate of star formation

A starburst galaxy is one undergoing an exceptionally high rate of star formation, as compared to the long-term average rate of star formation in the galaxy, or the star formation rate observed in most other galaxies.

NGC 4631 is a barred spiral galaxy in the constellation Canes Venatici about 30 million light years away from Earth. This galaxy's slightly distorted wedge shape gives it the appearance of a herring or a whale, hence its nickname. Because this nearby galaxy is seen edge-on from Earth, professional astronomers observe this galaxy to better understand the gas and stars located outside the plane of the galaxy.

<span class="mw-page-title-main">Reionization</span> Process that caused matter to reionize early in the history of the Universe

In the fields of Big Bang theory and cosmology, reionization is the process that caused electrically neutral atoms in the universe to reionize after the lapse of the "dark ages".

<span class="mw-page-title-main">NGC 300</span> Galaxy in the constellation Sculptor

NGC 300 (also known as Caldwell 70 or the Sculptor Pinwheel Galaxy) is a spiral galaxy in the constellation Sculptor. It is one of the closest galaxies to the Local Group, and probably lies between the latter and the Sculptor Group. It is the brightest of the five main spirals in the direction of the Sculptor Group. It is inclined at an angle of 42° when viewed from Earth and shares many characteristics of the Triangulum Galaxy. It is 94,000 light-years in diameter, somewhat smaller than the Milky Way, and has an estimated mass of (2.9 ± 0.2) × 1010M.

<span class="mw-page-title-main">NGC 6397</span> Globular cluster of stars in the Milky Way

NGC 6397 is a globular cluster in the constellation Ara that was discovered by French astronomer Nicolas-Louis de Lacaille in 1752. It is located about 7,800 light-years from Earth, making it one of the two nearest globular clusters to Earth. The cluster contains around 400,000 stars, and can be seen with the naked eye under good observing conditions.

<span class="mw-page-title-main">Messier 90</span> Galaxy in the constellation Virgo

Messier 90 is an intermediate spiral galaxy exhibiting a weak inner ring structure about 60 million light-years away[a] in the constellation Virgo. It was discovered by Charles Messier in 1781.

<span class="mw-page-title-main">Sculptor Galaxy</span> Intermediate spiral galaxy in the constellation Sculptor

The Sculptor Galaxy is an intermediate spiral galaxy in the constellation Sculptor. The Sculptor Galaxy is a starburst galaxy, which means that it is currently undergoing a period of intense star formation.

<span class="mw-page-title-main">NGC 1705</span> Galaxy in the constellation Pictor

NGC 1705 is a peculiar lenticular galaxy and a blue compact dwarf galaxy (BCD) in the southern constellation of Pictor, positioned less than a degree to the east of Iota Pictoris, and is undergoing a starburst. With an apparent visual magnitude of 12.6 it requires a telescope to observe. It is estimated to be approximately 17 million light-years from the Earth, and is a member of the Dorado Group.

A super star cluster (SSC) is a very massive young open cluster that is thought to be the precursor of a globular cluster. These clusters called "super" because they are relatively more luminous and contain more mass than other young star clusters. The SSC, however, does not have to physically be larger than other clusters of lower mass and luminosity. They typically contain a very large number of young, massive stars that ionize a surrounding HII region or a so-called "Ultra dense HII region (UDHII)" in the Milky Way Galaxy or in other galaxies. An SSC's HII region is in turn surrounded by a cocoon of dust. In many cases, the stars and the HII regions will be invisible to observations in certain wavelengths of light, such as the visible spectrum, due to high levels of extinction. As a result, the youngest SSCs are best observed and photographed in radio and infrared. SSCs, such as Westerlund 1 (Wd1), have been found in the Milky Way Galaxy. However, most have been observed in farther regions of the universe. In the galaxy M82 alone, 197 young SSCs have been observed and identified using the Hubble Space Telescope.

<span class="mw-page-title-main">NGC 4214</span> Galaxy in the constellation Canes Venatici

NGC 4214 is a dwarf barred irregular galaxy located around 10 million light-years away in the constellation Canes Venatici. NGC 4214 is a member of the M94 Group.

<span class="mw-page-title-main">NGC 1808</span> Galaxy in the constellation Columba

NGC 1808 is a barred spiral galaxy located in the southern constellation of Columba, about two degrees to the south and east of Gamma Caeli. It was discovered by Scottish astronomer James Dunlop, who described it as a "faint nebula". The galaxy is a member of the NGC 1808 group, which is part of the larger Dorado Group.

<span class="mw-page-title-main">NGC 2363</span> H II region in the constellation Camelopardalis

NGC 2363 is a star-forming region in the Magellanic galaxy NGC 2366 which is located in the constellation Camelopardalis. It contains NGC 2363-V1, a luminous blue variable star which is 6,300,000 times more luminous than the Sun and one of the most luminous stars known. It can be seen in this Hubble Space Telescope image as the bright isolated star in the dark void on the left of the nebula.

<span class="mw-page-title-main">Pea galaxy</span> Possible type of luminous blue compact galaxy

A Pea galaxy, also referred to as a Pea or Green Pea, might be a type of luminous blue compact galaxy that is undergoing very high rates of star formation. Pea galaxies are so-named because of their small size and greenish appearance in the images taken by the Sloan Digital Sky Survey (SDSS).

<span class="mw-page-title-main">NGC 2363-V1</span> Luminous blue variable star in the constellation Camelopardalis

NGC 2363-V1 is a luminous blue variable star in the star-forming region NGC 2363, at the far southwestern part of the irregular galaxy NGC 2366 in the constellation Camelopardalis, near the north celestial pole nearly 11 million light years away from our galaxy. It was discovered in 1996 by Laurent Drissen, Jean-René Roy, and Carmelle Robert while examining images taken by the Hubble Space Telescope Wide Field Planetary Camera 2.

<span class="mw-page-title-main">NGC 3256</span> Peculiar galaxy in the constellation Vela

NGC 3256 is a peculiar galaxy formed from the collision of two separate galaxies in the constellation of Vela. NGC 3256 is located about 100 million light-years away and belongs to the Hydra–Centaurus Supercluster complex. NGC 3256 provides a nearby template for studying the properties of young star clusters in tidal tails. The system hides a double nucleus and a tangle of dust lanes in the central region. The telltale signs of the collision are two extended luminous tails swirling out from the galaxy. The tails are studded with a particularly high density of star clusters. NGC 3256 is the most luminous galaxy in the infrared spectrum located within z 0.01 from Earth.

<span class="mw-page-title-main">Gaia Sausage</span> Remains galaxy merger in the Milky Way

The Gaia Sausage or Gaia Enceladus is the remains of a dwarf galaxy that merged with the Milky Way about 8–11 billion years ago. At least eight globular clusters were added to the Milky Way along with 50 billion solar masses of stars, gas and dark matter. It represents the last major merger of the Milky Way.

NGC 6822-WR 12 is a WN-type Wolf-Rayet star located in the galaxy NGC 6822, about 1.54 million light years away in the constellation of Sagittarius. NGC 6822-WR 12 was the first Wolf-Rayet star to be discovered in the galaxy, and is one of only four known in the galaxy.

References

  1. 1 2 3 4 5 6 7 "NASA/IPAC Extragalactic Database". Results for NGC 2366. Retrieved 2007-04-08.
  2. 1 2 "Hubble Observes a Dwarf Galaxy with a Bright Nebula". ESA/Hubble Press Release. Retrieved 10 May 2012.
  3. 1 2 3 4 5 6 7 8 9 10 11 12 13 G. Micheva; M.S. Oey; A.E. Jaskot; B.L. James (August 2017). "Mrk 71/NGC 2366: The Nearest Green Pea Analog". The Astrophysical Journal. 845 (2): 13. arXiv: 1704.01678 . Bibcode:2017ApJ...845..165M. doi: 10.3847/1538-4357/aa830b . S2CID   119049347.
  4. G. de Vaucouleurs; A. de Vaucouleurs; H.G. Corwin; R.J. Buta; G. Paturel; P. Fouque (1991). Third Reference Catalogue of Bright Galaxies. Volume I: Explanations and references. Volume II: Data for galaxies between 0h and 12h. Volume III: Data for galaxies between 12h and 24h. Springer, New York. p. 2091. Bibcode:1991rc3..book.....D. ISBN   978-0-387-97552-8.
  5. 1 2 H.G. Corwin (2006). "Historical Notes: NGC 2000 through NGC 2999". Archived from the original on 4 March 2016. Retrieved 29 October 2017.
  6. 1 2 R.M. Gonzalez-Delgado; E. Perez; G. Tenorio-Tagle; et al. (1994). "Violent star formation in NGC 2363" (PDF). The Astrophysical Journal. 437: 239–261. Bibcode:1994ApJ...437..239G. doi:10.1086/174992. hdl: 10486/13452 .
  7. Karachentsev, I.D.; Sharina, M.E.; Dolphin, A.E.; Grebel, E.K. (2003). "Distances to nearby galaxies around IC 342". Astronomy & Astrophysics. 408 (1): 111–118. Bibcode:2003A&A...408..111K. doi: 10.1051/0004-6361:20030912 . ISSN   0004-6361.
  8. 1 2 3 L. Drissen; J.-R. Roy; C. Robert; D. Devost; R. Doyon (2000). "The Star Formation History of the Starburst Region NGC 2363 and its Surroundings". The Astronomical Journal. 119 (22): 688–704. arXiv: astro-ph/9910476 . Bibcode:2000AJ....119..688D. doi:10.1086/301204. S2CID   119372867.
  9. 1 2 B.L. James; M. Auger; A. Valois; D. Calzetti; L. Kewley (January 2016). "Resolving Ionization and Metallicity on Parsec Scales across Mrk 71 with HST-WFC3". The Astrophysical Journal. 816 (1): 40. arXiv: 1510.02447 . Bibcode:2016ApJ...816...40J. doi: 10.3847/0004-637X/816/1/40 . S2CID   118671054.
  10. 1 2 K.R. Sokal; K.E. Johnson; R. Indebetouw; P. Massey (August 2016). "The Prevalence and Impact of Wolf-Rayet Stars in Emerging Massive Star Clusters". The Astrophysical Journal. 826 (2): 194. arXiv: 1605.08044 . Bibcode:2016ApJ...826..194S. doi: 10.3847/0004-637X/826/2/194 . S2CID   118517910.
  11. Y.I. Izotov; I. Orlitova; D. Schaerer; T.X. Thuan; A. Verhamme; N.G. Guseva; G. Worseck (2016). "Eight per cent leakage of Lyman continuum photons from a compact, star-forming dwarf galaxy". Nature. 529 (7585): 178–180. arXiv: 1601.03068 . Bibcode:2016Natur.529..178I. doi:10.1038/nature16456. PMID   26762455. S2CID   3033749.
  12. Dawn Erb (2016). "Cosmology: Photons from dwarf galaxy zap hydrogen". Nature. 529 (7585): 159–160. Bibcode:2016Natur.529..159E. doi: 10.1038/529159a . PMID   26762452.
  13. 1 2 Y.I. Izotov; T.X. Thuan; V.A. Lipovetsky (1997). "The Primordial Helium Abundance: Systematic Effects and a New Determination". The Astrophysical Journal Supplement Series. 108 (1): 1–39. Bibcode:1997ApJS..108....1I. doi: 10.1086/312956 .
  14. 1 2 3 4 M. S. Oey; C. N. Herrera; S. Silich; M. Reiter; B.L. James; A. E. Jaskot; G. Micheva (November 2017). "Dense CO in Mrk 71-A: Superwind Suppressed in a Young Super Star Cluster". The Astrophysical Journal Letters. 849 (1): 6. arXiv: 1710.03261 . Bibcode:2017ApJ...849L...1O. doi: 10.3847/2041-8213/aa9215 . S2CID   119201873.