Flame Nebula

Last updated
NGC 2024
Emission nebula
NASA-FlameNebula-NGC2024-20140507.jpg
The Flame Nebula (NGC 2024) - based on Chandra X-Ray and Spitzer Infrared images.
Observation data: J2000.0 epoch
Right ascension 05h 41m 54s
Declination −01° 51 0.0
Distance1350 [1]   ly    (415  pc)
Apparent magnitude (V)10
Apparent dimensions (V)30'x30'
Constellation Orion
Physical characteristics
Radius 6 ly
DesignationsNGC 2024 and Sharpless 277
See also: Lists of nebulae

The Flame Nebula, designated as NGC 2024 and Sh2-277, is an emission nebula in the constellation Orion. It is about 1350 light-years away. [1] At that distance, the Flame Nebula lies within the Orion B cloud of the larger Orion Molecular Cloud Complex.

Contents

The bright star Alnitak (ζ Ori), the easternmost star in the Belt of Orion, appears very close to the Flame Nebula in the sky. But the star and nebula are not physically associated with one another. The Flame Nebula contains a young cluster of stars which includes at least one hot, luminous O-type star labeled IRS 2b. [2] The dense gas and dust in the foreground of the nebula heavily obscures the star cluster inside the nebula, making studies at infrared wavelengths most useful.

The energetic ultraviolet light emitted by the central O-type star IRS 2b into the Flame Nebula causes the gas to be excited and heated. The glow of the nebula results from the energy input from this central star. Within the nebula and surrounding the central hot star is a cluster of young, lower-mass stars, [3] 86% of which have circumstellar disks. [4] X-ray observations by the Chandra X-ray Observatory [5] [6] show several hundred young stars, out of an estimated population of 800 stars. [7] X-ray and infrared images indicate that the young stars are concentrated near the center of the cluster. [8] [9]

The center of the Flame Nebula seen by JWST NIRCam, revealing proplyds in new detail and revealing two new candidates. Flame Nebula proplyds.jpg
The center of the Flame Nebula seen by JWST NIRCam, revealing proplyds in new detail and revealing two new candidates.

The Flame Nebula was observed with ALMA and this study found two populations, which are separated by a molecular cloud. The eastern population is 0.2-0.5 Myr old and has a disk fraction of 45±7%. The western population is slightly older at 1 Myr and has a lower disk fraction of 15±4%. [10] This disk fraction is lower than the one observed in the mid-infrared, [4] but the ALMA survey also observed a smaller region. [10] The eastern part contains the O8 star IRS 2b and the western part contains the B0.5V star IRS 1. Hubble observations have shown that the Flame Nebula contains 4 clear proplyds and 4 candidate proplyds. Three of these are in the older western region and are pointing towards IRS 1. The other 5 are in the younger eastern region and are pointing towards IRS 2b. [11]

Related Research Articles

<span class="mw-page-title-main">Star formation</span> Process by which dense regions of molecular clouds in interstellar space collapse to form stars

Star formation is the process by which dense regions within molecular clouds in interstellar space, sometimes referred to as "stellar nurseries" or "star-forming regions", collapse and form stars. As a branch of astronomy, star formation includes the study of the interstellar medium (ISM) and giant molecular clouds (GMC) as precursors to the star formation process, and the study of protostars and young stellar objects as its immediate products. It is closely related to planet formation, another branch of astronomy. Star formation theory, as well as accounting for the formation of a single star, must also account for the statistics of binary stars and the initial mass function. Most stars do not form in isolation but as part of a group of stars referred as star clusters or stellar associations.

<span class="mw-page-title-main">Orion Nebula</span> Diffuse nebula in the constellation Orion

The Orion Nebula is a diffuse nebula situated in the Milky Way, being south of Orion's Belt in the constellation of Orion, and is known as the middle "star" in the "sword" of Orion. It is one of the brightest nebulae and is visible to the naked eye in the night sky with apparent magnitude 4.0. It is 1,344 ± 20 light-years (412.1 ± 6.1 pc) away and is the closest region of massive star formation to Earth. The M42 nebula is estimated to be 24 light-years across. It has a mass of about 2,000 times that of the Sun. Older texts frequently refer to the Orion Nebula as the Great Nebula in Orion or the Great Orion Nebula.

<span class="mw-page-title-main">H II region</span> Large, low-density interstellar cloud of partially ionized gas

An H II region or HII region is a region of interstellar atomic hydrogen that is ionized. It is typically in a molecular cloud of partially ionized gas in which star formation has recently taken place, with a size ranging from one to hundreds of light years, and density from a few to about a million particles per cubic centimetre. The Orion Nebula, now known to be an H II region, was observed in 1610 by Nicolas-Claude Fabri de Peiresc by telescope, the first such object discovered.

<span class="mw-page-title-main">Rosette Nebula</span> Emission nebula in the constellation Monoceros

The Rosette Nebula is an H II region located near one end of a giant molecular cloud in the Monoceros region of the Milky Way Galaxy. The open cluster NGC 2244 is closely associated with the nebulosity, the stars of the cluster having been formed from the nebula's matter.

<span class="mw-page-title-main">Trifid Nebula</span> Emission nebula in the constellation Sagittarius

The Trifid Nebula is an H II region in the north-west of Sagittarius in a star-forming region in the Milky Way's Scutum–Centaurus Arm. It was discovered by Charles Messier on June 5, 1764. Its name means 'three-lobe'. The object is an unusual combination of an open cluster of stars, an emission nebula, a reflection nebula, and a dark nebula. Viewed through a small telescope, the Trifid Nebula is a bright and peculiar object, and is thus a perennial favorite of amateur astronomers.

<span class="mw-page-title-main">Protoplanetary disk</span> Gas and dust surrounding a newly formed star

A protoplanetary disk is a rotating circumstellar disc of dense gas and dust surrounding a young newly formed star, a T Tauri star, or Herbig Ae/Be star. The protoplanetary disk may also be considered an accretion disk for the star itself, because gases or other material may be falling from the inner edge of the disk onto the surface of the star. This process should not be confused with the accretion process thought to build up the planets themselves. Externally illuminated photo-evaporating protoplanetary disks are called proplyds.

<span class="mw-page-title-main">Proplyd</span> Dust ring surrounding large stars thousands of solar radii wide

A proplyd, short for ionized protoplanetary disk, is an externally illuminated photoevaporating protoplanetary disk around a young star. Nearly 180 proplyds have been discovered in the Orion Nebula. Images of proplyds in other star-forming regions are rare, while Orion is the only region with a large known sample due to its relative proximity to Earth.

Photoevaporation is the process where energetic radiation ionises gas and causes it to disperse away from the ionising source. The term is typically used in an astrophysical context where ultraviolet radiation from hot stars acts on clouds of material such as molecular clouds, protoplanetary disks, or planetary atmospheres.

<span class="mw-page-title-main">Orion molecular cloud complex</span> Star-forming region in the constellation Orion

The Orion molecular cloud complex is a star-forming region with stellar ages ranging up to 12 Myr. Two giant molecular clouds are a part of it, Orion A and Orion B. The stars currently forming within the complex are located within these clouds. A number of other somewhat older stars no longer associated with the molecular gas are also part of the complex, most notably the Orion's Belt, as well as the dispersed population north of it. Near the head of Orion there is also a population of young stars that is centered on Meissa. The complex is between 1 000 and 1 400 light-years away, and hundreds of light-years across.

<span class="mw-page-title-main">Sh2-279</span> Emission nebula in the constellation Orion

Sh2-279 is an HII region and bright nebulae that includes a reflection nebula located in the constellation Orion. It is the northernmost part of the asterism known as Orion's Sword, lying 0.6° north of the Orion Nebula. The reflection nebula embedded in Sh2-279 is popularly known as the Running Man Nebula.

<span class="mw-page-title-main">Sigma Orionis</span> Five-star system in the constellation Orion

Sigma Orionis or Sigma Ori is a multiple star system in the constellation Orion, consisting of the brightest members of a young open cluster. It is found at the eastern end of the belt, south west of Alnitak and west of the Horsehead Nebula which it partially illuminates. The combined brightness of the component stars is magnitude 3.80.

<span class="mw-page-title-main">NGC 6357</span> Emission nebula in the constellation Scorpius

NGC 6357 is a diffuse nebula near NGC 6334 in the constellation Scorpius. The nebula contains many proto-stars shielded by dark discs of gas, and young stars wrapped in expanding "cocoons" or expanding gases surrounding these small stars. It is also known as the Lobster Nebula. This nebula was given the name War and Peace Nebula by the Midcourse Space Experiment scientists because of its appearance, which, in infrared images the bright, western part resembles a dove, while the eastern part looks like a skull. A petition by anime fans to rename it as the Madokami nebula, due to resemblance with a character, was unsuccessful.

<span class="mw-page-title-main">NGC 1333</span> Reflection nebula in the constellation Perseus

NGC 1333 is a reflection nebula located in the northern constellation Perseus, positioned next to the southern constellation border with Taurus and Aries. It was first discovered by German astronomer Eduard Schönfeld in 1855. The nebula is visible as a hazy patch in a small telescope, while a larger aperture will show a pair of dark nebulae designated Barnard 1 and Barnard 2. It is associated with a dark cloud L1450. Estimates of the distance to this nebula range from 980–1,140 ly (300–350 pc).

<span class="mw-page-title-main">Lambda Orionis Cluster</span>

The Lambda Orionis Cluster is an open star cluster located north-west of the star Betelgeuse in the constellation of Orion. It is about five million years old and roughly 1,300 ly (400 pc) away from the Sun. Included within the cluster is a double star named Meissa. With the rest of Orion, it is visible from the middle of August in the morning sky, to late April before Orion becomes too close to the Sun to be seen well. It can be seen from both the northern hemisphere and the southern hemisphere.

<span class="mw-page-title-main">Westerhout 40</span> Star-forming region in the constellation Serpens

Westerhout 40 or W40 is a star-forming region in the Milky Way located in the constellation Serpens. In this region, interstellar gas forming a diffuse nebula surrounds a cluster of several hundred new-born stars. The distance to W40 is 436 ± 9 pc, making it one of the closest sites of formation of high-mass O-type and B-type stars. The ionizing radiation from the massive OB stars has created an H II region, which has an hour-glass morphology.

<span class="mw-page-title-main">RCW 36</span> Emission nebula in the constellation of Vela

RCW 36 is an emission nebula containing an open cluster in the constellation Vela. This H II region is part of a larger-scale star-forming complex known as the Vela Molecular Ridge (VMR), a collection of molecular clouds in the Milky Way that contain multiple sites of ongoing star-formation activity. The VMR is made up of several distinct clouds, and RCW 36 is embedded in the VMR Cloud C.

<span class="mw-page-title-main">Embedded cluster</span> Stellar object cluster

Embedded stellar clusters, or simply embedded clusters (EC), are open clusters that are still surrounded by their progenitor molecular cloud. They are often areas of active star formation, giving rise to stellar objects that have similar ages and compositions. Because of the dense material that surrounds the stars, they appear obscured in visible light but can be observed using other sections of the electromagnetic spectrum, such as the near-infrared and X-rays that can see through the cloud material. In the Milky Way Galaxy, embedded clusters can mostly be found within the Galactic disk or near the Galactic Center where most of the star-formation activity is happening.

<span class="mw-page-title-main">Barnard 203</span> Dark nebula in constellation Perseus

The dark nebula Barnard 203 or Lynds 1448 is located about one degree southwest of NGC 1333 in the Perseus molecular cloud, at a distance of about 800 light-years. Three infrared sources were observed in this region by IRAS, called IRS 1, IRS 2 and IRS 3.

References

  1. 1 2 Meyer, M. R.; et al. (2008). "Star Formation in NGC 2023, NGC 2024, and Southern L1630". In Reipurth, B. (ed.). Handbook of Star Forming Regions, Volume II: The Southern Sky ASP Monograph Publications. Vol. 5. p. 43. Bibcode:2008hsf1.book..662M. ISBN   978-1-58381-670-7.
  2. Bik, A.; et al. (2003). "Identification of the ionizing source of NGC 2024". Astronomy & Astrophysics. 404 (1): 249–254. Bibcode:2003A&A...404..249B. doi:10.1051/0004-6361.
  3. Haisch, K. E. Jr.; Lada, E. A.; Lada, C. J. (2000). "A Near-Infrared L-Band Survey of the Young Embedded Cluster NGC 2024". Astronomical Journal. 120 (2): 1396–1409. arXiv: astro-ph/0006219 . Bibcode:2000AJ....120.1396H. doi:10.1086/301521. S2CID   18143699.
  4. 1 2 Haisch, K. E. Jr.; et al. (2001). "A Mid-Infrared Study of the Young Stellar Population in the NGC 2024 Cluster". Astronomical Journal. 121 (3): 1512–1521. arXiv: astro-ph/0012482 . Bibcode:2001AJ....121.1512H. doi:10.1086/319397. S2CID   1645511.
  5. Skinner, S.; Gagné, M.; Belzer, E. (2003). "A Deep Chandra X-Ray Observation of the Embedded Young Cluster in NGC 2024". Astrophysical Journal. 598 (1): 375–391. arXiv: astro-ph/0306566 . Bibcode:2003ApJ...598..375S. doi:10.1086/378085. S2CID   18798394.
  6. Broos, P. S.; et al. (2013). "Identifying Young Stars in Massive Star-forming Regions for the MYStIX Project". Astrophysical Journal. 209 (2): 32. arXiv: 1309.4500 . Bibcode:2013ApJS..209...32B. doi:10.1088/0067-0049/209/2/32. S2CID   67827240.
  7. Kuhn, M. A.; Getman, K. V.; Feigelson, E. D. (2015). "The Spatial Structure of Young Stellar Clusters. II. Total Young Stellar Populations". Astrophysical Journal. 802 (1): 60. arXiv: 1501.05300 . Bibcode:2015ApJ...802...60K. doi:10.1088/0004-637X/802/1/60. S2CID   119309858.
  8. Getman, K. V.; Feigelson, E. D.; Kuhn, M. A. (2014). "Core-Halo Age Gradients and Star Formation in the Orion Nebula and NGC 2024 Young Stellar Clusters". Astrophysical Journal. 787 (2): 109. arXiv: 1403.2742 . Bibcode:2014ApJ...787..109G. doi:10.1088/0004-637X/787/2/109. S2CID   118503957.
  9. Nemiroff, R.; Bonnell, J., eds. (10 May 2014). "Inside the Flame Nebula". Astronomy Picture of the Day . NASA . Retrieved February 14, 2015.
  10. 1 2 van Terwisga, S. E.; van Dishoeck, E. F.; Mann, R. K.; Di Francesco, J.; van der Marel, N.; Meyer, M.; Andrews, S. M.; Carpenter, J.; Eisner, J. A.; Manara, C. F.; Williams, J. P. (2020-08-01). "Protoplanetary disk masses in NGC 2024: Evidence for two populations". Astronomy and Astrophysics. 640: A27. arXiv: 2004.13551 . doi:10.1051/0004-6361/201937403. ISSN   0004-6361.
  11. Haworth, Thomas; Jinyoung, Kim; Winter, Andrew; Hines, Dean; Clarke, Cathie; Sellek, Andrew; Ballabio, Giulia; Stapelfeldt, Karl (March 2021). "Proplyds in the flame nebula NGC 2024". Monthly Notices of the Royal Astronomical Society. 501 (3): 3502–3514. arXiv: 2012.09166 . doi:10.1093/mnras/staa3918.