Sh 2-7

Last updated
Sh 2-7
Emission nebula
Observation data: epoch
Right ascension 16h 0m
Declination -22d 57m
Constellation Scorpius
See also: Lists of nebulae

Sh 2-7 is an emission nebula in the Scorpius constellation. The nebula is around the star Delta Scorpii. It lies next to a large reflection nebula, Sh 2-1. [1]

According to the paper Interstellar magnetic cannon targeting the Galactic halo. A young bubble at the origin of the Ophiuchus and Lupus molecular complexes, the HII region Sh 2-7 may be acting as a faraday screen, altering the polarization of the GCS. [2]

Related Research Articles

<span class="mw-page-title-main">Molecular cloud</span> Type of interstellar cloud

A molecular cloud, sometimes called a stellar nursery (if star formation is occurring within), is a type of interstellar cloud, the density and size of which permit absorption nebulae, the formation of molecules (most commonly molecular hydrogen, H2), and the formation of H II regions. This is in contrast to other areas of the interstellar medium that contain predominantly ionized gas.

<span class="mw-page-title-main">Serpens</span> Constellation split into two non-contiguous parts

Serpens is a constellation in the northern celestial hemisphere. One of the 48 constellations listed by the 2nd-century astronomer Ptolemy, it remains one of the 88 modern constellations designated by the International Astronomical Union. It is unique among the modern constellations in being split into two non-contiguous parts, Serpens Caput to the west and Serpens Cauda to the east. Between these two halves lies the constellation of Ophiuchus, the "Serpent-Bearer". In figurative representations, the body of the serpent is represented as passing behind Ophiuchus between Mu Serpentis in Serpens Caput and Nu Serpentis in Serpens Cauda.

<span class="mw-page-title-main">Star formation</span> Process by which dense regions of molecular clouds in interstellar space collapse to form stars

Star formation is the process by which dense regions within molecular clouds in interstellar space, sometimes referred to as "stellar nurseries" or "star-forming regions", collapse and form stars. As a branch of astronomy, star formation includes the study of the interstellar medium (ISM) and giant molecular clouds (GMC) as precursors to the star formation process, and the study of protostars and young stellar objects as its immediate products. It is closely related to planet formation, another branch of astronomy. Star formation theory, as well as accounting for the formation of a single star, must also account for the statistics of binary stars and the initial mass function. Most stars do not form in isolation but as part of a group of stars referred as star clusters or stellar associations.

<span class="mw-page-title-main">Galactic Center</span> Rotational center of the Milky Way galaxy

The Galactic Center is the barycenter of the Milky Way and a corresponding point on the rotational axis of the galaxy. Its central massive object is a supermassive black hole of about 4 million solar masses, which is called Sagittarius A*, a compact radio source which is almost exactly at the galactic rotational center. The Galactic Center is approximately 8 kiloparsecs (26,000 ly) away from Earth in the direction of the constellations Sagittarius, Ophiuchus, and Scorpius, where the Milky Way appears brightest, visually close to the Butterfly Cluster (M6) or the star Shaula, south to the Pipe Nebula.

<span class="mw-page-title-main">Local Bubble</span> Cavity in the interstellar medium which contains the Local Interstellar Cloud

The Local Bubble, or Local Cavity, is a relative cavity in the interstellar medium (ISM) of the Orion Arm in the Milky Way. It contains the closest of celestial neighbours and among others, the Local Interstellar Cloud, the neighbouring G-Cloud, the Ursa Major moving group and the Hyades. It is estimated to be at least 1000 light years in size, and is defined by its neutral-hydrogen density of about 0.05 atoms/cm3, or approximately one tenth of the average for the ISM in the Milky Way (0.5 atoms/cm3), and one sixth that of the Local Interstellar Cloud (0.3 atoms/cm3).

<span class="mw-page-title-main">Barnard's Loop</span> Emission nebula in the constellation of Orion

Barnard's Loop is an emission nebula in the constellation of Orion. It is part of the Orion molecular cloud complex which also contains the dark Horsehead and bright Orion nebulae. The loop takes the form of a large arc centered approximately on the Orion Nebula. The stars within the Orion Nebula are believed to be responsible for ionizing the loop.

<span class="mw-page-title-main">NGC 6357</span> Emission nebula in the constellation Scorpius

NGC 6357 is a diffuse nebula near NGC 6334 in the constellation Scorpius. The nebula contains many proto-stars shielded by dark discs of gas, and young stars wrapped in expanding "cocoons" or expanding gases surrounding these small stars. It is also known as the Lobster Nebula. This nebula was given the name War and Peace Nebula by the Midcourse Space Experiment scientists because of its appearance, which, in infrared images the bright, western part resembles a dove, while the eastern part looks like a skull. A petition by anime fans to rename it as the Madokami nebula, due to resemblance with a character, was unsuccessful.

<span class="mw-page-title-main">Sh 2-155</span> H II region in the constellation Cepheus

Sh 2-155 is a diffuse nebula in the constellation Cepheus, within a larger nebula complex containing emission, reflection, and dark nebulosity. It is widely known as the Cave Nebula, though that name was applied earlier to Ced 201, a different nebula in Cepheus. Sh 2-155 is an ionized H II region with ongoing star formation activity, at an estimated distance of 725 parsecs from Earth.

<span class="mw-page-title-main">EZ Canis Majoris</span> Binary star system in the constellation Canis Major

EZ Canis Majoris is binary system in the constellation of Canis Major. The primary is a Wolf-Rayet star and it is one of the ten brightest Wolf-Rayet stars, brighter than apparent magnitude 7.

63 Ophiuchi is an O-type giant star in the constellation Sagittarius, despite its name. During a 2009 survey for companions of massive stars, it was observed using speckle interferometry but no companion was found. The small parallax measurement of 0.91±0.09 mas suggest that this extremely luminous star may be located about 3,600 light-years away. An estimate of the distance based on the strength of the Ca II line yields a more modest value of 2,605 ly (799 pc). The star lies only 0.3° north of the galactic plane.

<span class="mw-page-title-main">Rho Ophiuchi</span> Multiple star system in the constellation Ophiuchus

Rho Ophiuchi is a multiple star system in the constellation Ophiuchus. The central system has an apparent magnitude of 4.63. Based on the central system's parallax of 9.03 mas, it is located about 360 light-years away. The other stars in the system are slightly farther away.

<span class="mw-page-title-main">Westerhout 40</span> Star-forming region in the constellation Serpens

Westerhout 40 or W40 is a star-forming region in the Milky Way located in the constellation Serpens. In this region, interstellar gas forming a diffuse nebula surrounds a cluster of several hundred new-born stars. The distance to W40 is 436 ± 9 pc, making it one of the closest sites of formation of high-mass O-type and B-type stars. The ionizing radiation from the massive OB stars has created an H II region, which has an hour-glass morphology.

<span class="mw-page-title-main">RCW 36</span> Emission nebula in the constellation of Vela

RCW 36 is an emission nebula containing an open cluster in the constellation Vela. This H II region is part of a larger-scale star-forming complex known as the Vela Molecular Ridge (VMR), a collection of molecular clouds in the Milky Way that contain multiple sites of ongoing star-formation activity. The VMR is made up of several distinct clouds, and RCW 36 is embedded in the VMR Cloud C.

<span class="mw-page-title-main">Serpens–Aquila Rift</span> Sky region containing dark interstellar clouds

The Serpens–Aquila Rift (also known as the Aquila Rift) is a region of the sky in the constellations Aquila, Serpens Cauda, and eastern Ophiuchus containing dark interstellar clouds. The region forms part of the Great Rift, the nearby dark cloud of cosmic dust that obscures the middle of the galactic plane of the Milky Way, looking inwards and towards its other radial sectors. The clouds that form this structure are called "molecular clouds", constituting a phase of the interstellar medium which is cold and dense enough for molecules to form, particularly molecular hydrogen (H2). These clouds are opaque to light in the optical part of the spectrum due to the presence of interstellar dust grains mixed with the gaseous component of the clouds. Therefore, the clouds in the Serpens-Aquila Rift block light from background stars in the disk of the Galaxy, forming the dark rift. The complex is located in a direction towards the inner Galaxy, where molecular clouds are common, so it is possible that not all components of the rift are at the same distance and physically associated with each other.

<span class="mw-page-title-main">Sh 2-88</span> Nebula in the constellation Vulpecula

Sharpless 2-88 or Sh 2-88 is a region including the diffuse nebula Sh 2-88A and the two compact knots Sh 2-88B1 and Sh 2-88B2, all of which are associated with Vulpecula OB1.

<span class="mw-page-title-main">Sh 2-297</span> Nebula

Sh 2-297 is an emission nebula in the constellation Canis Major. The region was catalogued in 1959 in the extended seconded edition of the Sharpless catalogue. This area is part of the Canis Major OB1 Association, and is a very active area of new star formation.

The Ophiuchus Superbubble is an astronomical phenomenon located in the Ophiuchus constellation, with a center around ℓ ≈ 30 °. This giant superbubble was first discovered in a 2007 study of extraplanar neutral hydrogen in the disk-halo transition of the Galaxy. The top extends to galactic latitudes over 25°, a distance of about 7 kpc. The Green Bank radio telescope has measured more than 220,000 HI spectra both in and around this structure.

<span class="mw-page-title-main">Sh 2-308</span> Emission nebula

Sh 2-308, also designated as Sharpless 308, RCW 11, or LBN 1052, and commonly known as the Dolphin-Head Nebula, is an H II region located near the center of the constellation Canis Major, composed of ionised hydrogen. It is about 8 degrees south of Sirius, the brightest star in the night sky. The nebula is bubble-like and surrounds a Wolf–Rayet star named EZ Canis Majoris. This star is in the brief, pre-supernova phase of its stellar evolution. The nebula is about 4,530 light-years away from Earth, but some sources indicate that both the star and the nebula are up to 5,870 ly (1,800 pc) away. Yet others indicate the nebula is as close as 1,875 ly (575 pc) from Earth.

<span class="mw-page-title-main">HD 73882</span> Eclipsing binary system in constellation Vela

HD 73882 is a visual binary system with the components separated by 0.6″ and a combined spectral class of O8. One of stars is an eclipsing binary system. The period of variability is listed as both 2.9199 days and 20.6 days, possibly due to the secondary being a spectroscopic binary star.

References

  1. "SH2-7". SharplessCatalog.Com. Sharpless Catalog. Retrieved October 11, 2019.
  2. Robitaille, J.-F.; Scaife, A. M. M.; Carretti, E.; Haverkorn, M.; Crocker, R. M.; Kesteven, M. J.; Poppi, S.; Staveley-Smith, L. (2018-09-01). "Interstellar magnetic cannon targeting the Galactic halo - A young bubble at the origin of the Ophiuchus and Lupus molecular complexes". Astronomy & Astrophysics. 617: A101. arXiv: 1807.04054 . Bibcode:2018A&A...617A.101R. doi: 10.1051/0004-6361/201833358 . ISSN   0004-6361.