CIT 6

Last updated
CIT 6
RWLMiLightCurve.png
An R band light curve for RW Leonis Minoris, adapted from Alksnis (1995) [1]
Observation data
Epoch J2000       Equinox J2000
Constellation Leo Minor
Right ascension 10h 16m 02.27770s [2]
Declination +30° 34 19.0451 [2]
Apparent magnitude  (V)12.8 - 16.5 [3]
Characteristics
Spectral type C4,3 [4]
Variable type SRa [3]
Astrometry
Radial velocity (Rv)−1.5 (LSR) [5]  km/s
Proper motion (μ)RA: −18.803 [2]   mas/yr
Dec.: 8.940 [2]   mas/yr
Parallax (π)3.1833 ± 0.2413  mas [2]
Distance 1,020 ± 80  ly
(310 ± 20  pc)
Details
primary
Mass <1 [6]   M
Radius 575 [7]   R
Luminosity 10,000 [7]   L
Temperature 2,445 [7]   K
companion
Mass 1-2 [6]   M
Other designations
RW  LMi, AFGL 1403, IRC+30219, IRAS 10131+3049, 2MASS J10160228+3034190
Database references
SIMBAD data

CIT 6 is a carbon star in the constellation Leo Minor. It is a semiregular variable star, with a period of about 628 days, and has been given the variable star designation RW Leonis Minoris. [1] It is perhaps the second most studied carbon star, after CW Leonis. [8] CIT 6 was discovered in 1966 by a group at the California Institute of Technology (which is why it is named CIT 6) who found it using the same 62-inch infrared telescope on Mount Wilson that was used to produce the Two-Micron Sky Survey. [9] It is the second brightest carbon star in the near-infrared, after CW Leonis (which is much closer to us). [1]

CIT 6 is believed to be a highly evolved star, in transition from the AGB phase to the protoplanetary nebula phase. [6] It is surrounded by a thick circumstellar envelope (CSE) of dust and molecular gas. [10] [11] Absorption and re-radiation of the starlight by the dust makes the object far brighter in the infrared than it is in visible light. [12] The molecular gas was first seen by Knapp and Morris in 1985, who detected a CO emission line. [13] Later studies of millimeter-wave radio emission have detected over 20 different molecular species in the CSE. There include CN, HCN, HC3N, HC5N, HC7N, SiS, SiO, SiC2, C4H and CH3CN. [11] [14]

HST images show that the dust component of the innermost region of CIT 6's CSE has developed the bipolar shape that is frequently seen in protoplanetary nebulae. [12] High spatial resolution interferometric measurements show that the CO emission lines arise from a spiral structure. The spiral structure of the molecular gas outflow, combined with the bipolar shape seen by the HST, strongly suggests that CIT 6's AGB star has a binary companion. [6]

Although it's invisible to the human eye, the CSE of CIT 6 covers a region of our night sky roughly 1/4 of the size of the full moon. The outermost edge of the CSE was seen by the GALEX satellite. It appears as two long arcs of emission (of ultraviolet light) 15 and 18 arc minutes in diameter, caused by the stellar wind colliding with the interstellar medium. The large size of the CSE indicates that CIT 6 has been losing mass at a high rate for at least 93,000 years. [8]

See also

Related Research Articles

<span class="mw-page-title-main">Flame Nebula</span> Emission nebula in the constellation Orion

The Flame Nebula, designated as NGC 2024 and Sh2-277, is an emission nebula in the constellation Orion. It is about 900 to 1,500 light-years away.

<span class="mw-page-title-main">CW Leonis</span> Star in the constellation Leo

CW Leonis or IRC +10216 is a variable carbon star that is embedded in a thick dust envelope. It was first discovered in 1969 by a group of astronomers led by Eric Becklin, based upon infrared observations made with the 62 inches (1.6 m) Caltech Infrared Telescope at Mount Wilson Observatory. Its energy is emitted mostly at infrared wavelengths. At a wavelength of 5 μm, it was found to have the highest flux of any object outside the Solar System.

<span class="mw-page-title-main">Ross 548</span> Variable star in the constellation Cetus

Ross 548 is a white dwarf in the equatorial constellation of Cetus. With a mean apparent visual magnitude of 14.2 it is much too faint to be visible to the naked eye. Based on parallax measurements, it is located at a distance of 107 light years from the Sun. It was found to be variable in 1970 and in 1972 it was given the variable star designation ZZ Ceti. This is a pulsating white dwarf of the DAV type that is the prototype of the ZZ Ceti variable class., pp. 891, 895.

<span class="mw-page-title-main">FU Orionis</span> Variable star in the constellation Orion

FU Orionis is a variable and binary star system in the constellation of Orion, that in 1937 rose in apparent visual magnitude from 16.5 to 9.6, and has since been around magnitude 9. The name FU Orionis is a variable star designation in the Argelander system, which are assigned sequentially as new variables are discovered. FU Orionis is about 1,360 light years distant and is associated with the molecular cloud Barnard 35.

<span class="mw-page-title-main">Becklin–Neugebauer Object</span> Infrared emitting object in the constellation Orion

The Becklin–Neugebauer Object(BN) is an object visible only in the infrared in the Orion molecular cloud 1 (OMC1). It was discovered in 1967 by Eric Becklin and Gerry Neugebauer during their near-infrared survey of the Orion Nebula. A faint glow around the center-most stars can be observed in the visible light spectrum, especially with the aid of a telescope.

<span class="mw-page-title-main">HD 172555</span> Star in the constellation Pavo

HD 172555 is a white-hot Type A7V star located relatively close by, 95 light years from Earth in the direction of the constellation Pavo. Spectrographic evidence indicates a relatively recent collision between two planet-sized bodies that destroyed the smaller of the two, which had been at least the size of the Moon, and severely damaged the larger one, which was at least the size of Mercury. Evidence of the collision was detected by NASA's Spitzer Space Telescope.

VX Sagittarii is an extreme asymptotic giant branch star located more than 1.5 kiloparsec away from the Sun in the constellation of Sagittarius. It is a pulsating variable star with an unusually large magnitude range. It is also one of the largest stars discovered so far, with a radius varying between 1,350 and 1,940 solar radii (940,000,000 and 1.35×109 km; 6.3 and 9.0 au). It is the most luminous known AGB star, at bolometric magnitude –8.6, which is even brighter than the theoretical limit at –8.0.

<span class="mw-page-title-main">Taurus molecular cloud</span> Interstellar molecular cloud in the constellations Taurus and Auriga

The Taurus molecular cloud (TMC-1) is an interstellar molecular cloud in the constellations Taurus and Auriga. This cloud hosts a stellar nursery containing hundreds of newly formed stars. The Taurus molecular cloud is only 140 pc away from Earth, making it possibly the nearest large star formation region. It has been important in star formation studies at all wavelengths.

<span class="mw-page-title-main">Strategic Explorations of Exoplanets and Disks with Subaru</span> Long survey that imaged exoplanets and protoplanetary disks

Strategic Explorations of Exoplanets and Disks with Subaru (SEEDS) is a multi-year survey that used the Subaru Telescope on Mauna Kea, Hawaii in an effort to directly image extrasolar planets and protoplanetary/debris disks around hundreds of nearby stars. SEEDS is a Japanese-led international project. It consists of some 120 researchers from a number of institutions in Japan, the U.S. and the EU. The survey's headquarters is at the National Astronomical Observatory of Japan (NAOJ) and led by Principal Investigator Motohide Tamura. The goals of the survey are to address the following key issues in the study of extrasolar planets and disks: the detection and census of exoplanets in the regions around solar-mass and massive stars; the evolution of protoplanetary disks and debris disks; and the link between exoplanets and circumstellar disks.

Scott Jay Kenyon is an American astrophysicist. His work has included advances in symbiotic and other types of interacting binary stars, the formation and evolution of stars, and the formation of planetary systems.

<span class="mw-page-title-main">49 Ceti</span> Star in the constellation Cetus

49 Ceti is a single star in the equatorial constellation of Cetus. It is visible to the naked eye as a dim, white-hued star with an apparent visual magnitude of 5.607. The star is located 186 light-years away from the Solar System, based on its parallax, and is drifting further away with a radial velocity of +10 km/s. 49 Ceti has been identified as a member of the 40-million-year-old Argus Association.

<span class="mw-page-title-main">David Ciardi</span> American astronomer

David Robert Ciardi is an American astronomer. He received a bachelor's degree in physics and astronomy from Boston University in 1991, and a Ph.D. in physics from the University of Wyoming in 1997.

<span class="mw-page-title-main">HL Tauri</span> Star in constellation Taurus

HL Tauri is a young T Tauri star in the constellation Taurus, approximately 450 light-years (140 pc) from Earth in the Taurus Molecular Cloud. The luminosity and effective temperature of HL Tauri imply that its age is less than 100,000 years. At apparent magnitude 15.1, it is too faint to be seen with the unaided eye. It is surrounded by a protoplanetary disk marked by dark bands visible in submillimeter radiation that may indicate a number of planets in the process of formation. It is accompanied by the Herbig–Haro object HH 150, a jet of gas emitted along the rotational axis of the disk that is colliding with nearby interstellar dust and gas.

<span class="mw-page-title-main">Westerhout 40</span> Star-forming region in the constellation Serpens

Westerhout 40 or W40 is a star-forming region in the Milky Way located in the constellation Serpens. In this region, interstellar gas forming a diffuse nebula surrounds a cluster of several hundred new-born stars. The distance to W40 is 436 ± 9 pc, making it one of the closest sites of formation of high-mass O-type and B-type stars. The ionizing radiation from the massive OB stars has created an H II region, which has an hour-glass morphology.

<span class="mw-page-title-main">RCW 36</span> Emission nebula in the constellation of Vela

RCW 36 is an emission nebula containing an open cluster in the constellation Vela. This H II region is part of a larger-scale star-forming complex known as the Vela Molecular Ridge (VMR), a collection of molecular clouds in the Milky Way that contain multiple sites of ongoing star-formation activity. The VMR is made up of several distinct clouds, and RCW 36 is embedded in the VMR Cloud C.

<span class="mw-page-title-main">15 Leonis Minoris</span> Star in the constellation Ursa Major

15 Leonis Minoris is the Flamsteed designation for a single star in the northern circumpolar constellation of Ursa Major. It has an apparent visual magnitude of 5.08, making it a fifth magnitude star that is visible to the naked eye. Based on parallax measurements, it is located at a distance of 61.7 light years from the Sun. The star has been examined for an infrared excess, but none was detected.

<span class="mw-page-title-main">L1551 IRS 5</span> Star in the constellation Taurus

L1551 IRS 5 is a protostellar envelope surrounding a binary protostar system in the constellation of Taurus 450 light-years from Earth. The binary system itself is known as L1551 NE, and each star is surrounded by protoplanetary disk. The system is one of Jim Kaler's The 100 greatest stars.

<span class="mw-page-title-main">Barnard 203</span> Dark nebula in constellation Perseus

The dark nebula Barnard 203 or Lynds 1448 is located about one degree southwest of NGC 1333 in the Perseus molecular cloud, at a distance of about 800 light-years. Three infrared sources were observed in this region by IRAS, called IRS 1, IRS 2 and IRS 3.

<span class="mw-page-title-main">EX Lupi</span>

EX Lupi is a young, single T-Tauri star in the southern constellation of Lupus. An irregular variable, it is the prototype of young, low-mass eruptive stars named EXors, with EX Lupi being this object's variable star designation. At its minimal activity level, EX Lupi resembles a classical T-Tauri star of the M0 dwarf type. The low latitude of this star, at a declination of −40°, makes it difficult for northern observers to view. Based on parallax measurements, it is located at a distance of approximately 514 light years from the Sun. The star lies next to a gap in the Lupus cloud complex, a star forming region.

<span class="mw-page-title-main">EP Aquarii</span> Variable star in the constellation Aquarius

EP Aquarii is a semiregular variable star in the equatorial constellation of Aquarius. At its peak brightness, visual magnitude 6.37, it might be faintly visible to the unaided eye under ideal observing conditions. A cool red giant on the asymptotic giant branch (AGB), its visible light brightness varies by about 1/2 magnitude over a period of 55 days. EP Aquarii has a complex circumstellar envelope (CSE), which has been the subject of numerous studies.

References

  1. 1 2 3 Alksnis, A. (January 1995). "Photographic Photometry of the Carbon Star RW LMi (CIT6) during 1989--1995". Baltic Astronomy. 4: 79–87. Bibcode:1995BaltA...4...79A. doi: 10.1515/astro-1995-0107 . S2CID   117340209.
  2. 1 2 3 4 5 Brown, A. G. A.; et al. (Gaia collaboration) (2021). "Gaia Early Data Release 3: Summary of the contents and survey properties". Astronomy & Astrophysics . 649: A1. arXiv: 2012.01533 . Bibcode:2021A&A...649A...1G. doi: 10.1051/0004-6361/202039657 . S2CID   227254300. (Erratum:  doi:10.1051/0004-6361/202039657e). Gaia EDR3 record for this source at VizieR.
  3. 1 2 "RW LMi". The International Variable Star Index. AAVSO. Retrieved 1 June 2022.
  4. Cohen, M. (March 1979). "Circumstellar envelopes and the evolution of carbon stars". Monthly Notices of the Royal Astronomical Society. 186 (4): 837–852. Bibcode:1979MNRAS.186..837C. doi: 10.1093/mnras/186.4.837 .
  5. Olofsson, H.; Eriksson, K.; Gustafsson, B.; Carlstrom, U. (July 1993). "A Study of Circumstellar Envelopes around Bright Carbon Stars. I. Structure, Kinematics, and Mass-Loss Rate". Astrophysical Journal Supplement. 87: 267. Bibcode:1993ApJS...87..267O. doi:10.1086/191804.
  6. 1 2 3 4 Kim, Hyosun; Liu, Sheng-Yuan; Hirano, Naomi; Zhao-Geisler, Ronny; Trejo, Alfonso; Yen, Hsi-Wei; Taam, Ronald E.; Kemper, Francisca; Kim, Jongsoo; Byun, Do-Young; Liu, Tie (November 2015). "High-resolution CO Observation of the Carbon Star CIT 6 Revealing the Spiral Structure and a Nascent Bipolar Outflow". The Astrophysical Journal. 814 (1): 61. arXiv: 1510.03916 . Bibcode:2015ApJ...814...61K. doi:10.1088/0004-637X/814/1/61. S2CID   119096472.
  7. 1 2 3 Milam, S. N.; Woolf, N. J.; Ziurys, L. M. (2009). "Circumstellar 12C/13C Isotope Ratios from Millimeter Observations of CN and CO: Mixing in Carbon- and Oxygen-Rich Stars". The Astrophysical Journal. 690 (1): 837. Bibcode:2009ApJ...690..837M. doi: 10.1088/0004-637X/690/1/837 . S2CID   21694789.
  8. 1 2 Sahai, Raghvendra; Mack-Crane, Galen P. (October 2014). "The Astrosphere of the Asymptotic Giant Branch Star CIT 6". The Astronomical Journal. 148 (4): 74. arXiv: 1408.1050 . Bibcode:2014AJ....148...74S. doi:10.1088/0004-6256/148/4/74. S2CID   119286571.
  9. Ulrich, B. T.; Neugebauer, G.; McCammon, D.; Leighton, R. B.; Hughes, E. E.; Becklin, E. (October 1966). "Further Observations of Extremely Cool Stars". Astrophysical Journal. 146: 288. Bibcode:1966ApJ...146..288U. doi: 10.1086/148881 .
  10. Bogdanov, M. B.; Taranova, O. G. (March 2005). "Infrared photometry of the carbon star RW LMi and an axisymmetric model for its dust envelope". Astronomy Reports. 49 (3): 226–231. Bibcode:2005ARep...49..226B. doi:10.1134/1.1882780. S2CID   120106060.
  11. 1 2 Zhang, Yong; Kwok, Sun; Dinh-V-Trung (February 2009). "A Molecular Line Survey of the Highly Evolved Carbon Star CIT 6". The Astrophysical Journal. 691 (2): 1660–1677. arXiv: 0808.3226 . Bibcode:2009ApJ...691.1660Z. doi:10.1088/0004-637X/691/2/1660. hdl: 10722/59598 . S2CID   16133227.
  12. 1 2 Schmidt, Gary D.; Hines, Dean C.; Swift, Seth (September 2002). "The Nascent Bipolar Nebula Surrounding the Carbon-rich Variable CIT 6: Transition to Axisymmetry". The Astrophysical Journal. 576 (1): 429–444. Bibcode:2002ApJ...576..429S. doi: 10.1086/341623 .
  13. Knapp, G. R.; Morris, M. (May 1985). "Mass Loss from Evolved Stars. III. Mass Loss Rates for 50 Stars from CO J = 1--0 Observations". Astrophysical Journal. 292: 640. Bibcode:1985ApJ...292..640K. doi: 10.1086/163197 .
  14. Chau, Wayne; Zhang, Yong; Nakashima, Jun-ichi; Deguchi, Shuji; Kwok, Sun (November 2012). "Molecular Line Observations of the Carbon-rich Circumstellar Envelope CIT 6 at 7 mm Wavelengths". The Astrophysical Journal. 760 (1): 66. Bibcode:2012ApJ...760...66C. doi: 10.1088/0004-637X/760/1/66 . S2CID   53369764.