Observation data Epoch J2000 Equinox J2000 | |
---|---|
Constellation | Dorado |
Right ascension | 05h 18m 14.3572s [1] |
Declination | −69° 15′ 01.148″ [1] |
Apparent magnitude (V) | 8.6 – 11.5 [2] |
Characteristics | |
Spectral type | B8/9eq – F0/5:Iae [3] |
U−B color index | –0.98 [4] |
B−V color index | +0.11 [4] |
Variable type | S Doradus [2] |
Astrometry | |
Radial velocity (Rv) | +228 [5] km/s |
Proper motion (μ) | RA: 1.735 [1] mas/yr Dec.: 0.280 [1] mas/yr |
Parallax (π) | 0.0073 ± 0.0371 mas [1] |
Distance | 169,000 ly (51,800 pc) |
Absolute magnitude (MV) | –7.6 (1965) –10.0 (1989) [6] |
Details | |
Mass | 24+16 −2 [7] M☉ |
1989 (maximum) | |
Radius | 380 [8] R☉ |
Luminosity | 910,000 [6] L☉ |
Surface gravity (log g) | 0.6 [8] cgs |
Temperature | 8,500 [6] K |
1985 (minimum) | |
Radius | 100 [8] R☉ |
Luminosity | 1,400,000 [8] L☉ |
Surface gravity (log g) | 1.6 [8] cgs |
Temperature | 20,000 [8] K |
1965 (deep minimum) | |
Luminosity | 2,000,000 [6] L☉ |
Temperature | 35,000 [6] K |
Other designations | |
Database references | |
SIMBAD | data |
S Doradus (also known as S Dor) is one of the brightest stars in the Large Magellanic Cloud (LMC), a satellite galaxy of the Milky Way, located roughly 160,000 light-years away. The star is a luminous blue variable, and one of the most luminous stars known, having a luminosity varying widely above and below 1,000,000 times the luminosity of the Sun, although it is too far away to be seen with the naked eye.
S Doradus was noted in 1897 as an unusual and variable star, of Secchi type I with bright lines of Hα, Hβ, and Hγ. [9] The formal recognition as a variable star came the assignment of the name S Doradus in 1904 in the second supplement to Catalogue of Variable Stars. [10]
S Dor was observed many times over the following decades. In 1924, it was described as "P Cygni class" and recorded at photographic magnitude 9.5 [11] In 1925, its absolute magnitude was estimated at −8.9. [12] In 1933 it was listed as a 9th-magnitude Beq star with bright hydrogen lines. [13] It was the most luminous star known at that time. [14] [15]
In 1943, the variability was interpreted as being due to eclipses of a binary companion, orbiting with a period of 40 years. [16] This was refuted in 1956, when the variability was described as irregular and the spectrum as A0 with P Cygni profiles and emission for many spectral lines. The brightness was observed to decline by 0.8 magnitude from 1954 into 1955. [17] At the same time, S Doradus was noted as being similar to the Hubble–Sandage variables, the LBVs discovered in M31 and M33. [18] The brief 1955 minimum was followed by a deep minimum in 1964, when the spectrum was compared to Eta Carinae in strong contrast to the mid-A spectrum at normal brightness. [19]
By 1969 the nature of S Doradus was still uncertain, considered possibly to be a pre-main-sequence star, [20] but during the next decade the consensus settled on the S Doradus type variables and Hubble-Sandage variables being evolved massive supergiants. [21] [22] They were eventually given the name "luminous blue variables" in 1984, coined in part because of the similarity of the acronym LBV to the well-defined LPV class of variable stars. [23] The classification system defined for the General Catalogue of Variable Stars pre-dated this and so the acronym SDOR is used for LBVs. [24]
S Doradus is the brightest member of the open cluster NGC 1910, also known as the LH41 stellar association, visible in binoculars as a bright condensation within the main bar of the LMC. This is within the N119 emission nebula, which has a distinctive spiral shape. [25] It is one of the visually brightest individual stars in the LMC, at some times the brightest. [26] There are only a handful of other 9th-magnitude stars in the LMC, such as the yellow hypergiant HD 33579. [27]
There are several compact clusters near S Doradus, within the general NGC 1910/LH41 association. The closest is less than four arc-minutes away, contains two out of the three WO stars in the entire LMC, and the entire cluster is about the same brightness as S Doradus. A little further away is NGC 1916. Another LBV, R85, is just two arc-minutes away. This rich star-forming region also hosts a third Wolf–Rayet star, at least ten other supergiants, and at least ten class O stars. [28]
S Doradus has a number of close companion stars. The Washington Double Star Catalog lists two 11th-magnitude stars 5″ away, which at the distance of the LMC is about four light years. [29] A much closer companion has been found using the Hubble Space Telescope Fine Guidance Sensor, 1.7″ away and four magnitudes fainter. [30] There are other nearby stars, most notably a 12th-magnitude OB supergiant at 13″. [31]
This star belongs to its own eponymous S Doradus class of variable stars, also designated as luminous blue variables or LBVs. LBVs exhibit long slow changes in brightness, punctuated by occasional outbursts. S Doradus is typically a magnitude 9 star, varying by a few tenths of a magnitude on timescales of a few months, superimposed on variations of about a magnitude taking several years. The extreme range of these variations is from about visual magnitude 8.6–10.4. Every few decades it shows a more dramatic decrease in brightness, to as low as magnitude 11.5. The nature of the variation is somewhat unusual for an LBV; S Doradus is typically in an outburst state, with only occasional fades to the quiescent state that is typical of most stars in the class. [32]
The colour of S Doradus changes as its brightness varies, being bluest when the star is faintest. [8] At the same time, the spectrum shows dramatic changes. It is typically an extreme mid-A supergiant with P Cygni profiles on many lines (e.g. A5eq [19] or A2/3Ia+e [33] ). At maximum brightness, the spectrum can become as cool as an F supergiant, with strong ionised metal lines and almost no emission components. [26] At minimum brightness, the spectrum is dominated by emission, particularly forbidden lines of Feii but also helium and other metals. At the deep minima these features are even more pronounced, and Feiii emission also appears. [19]
Attempts to identify regularity in the unpredictable changes of brightness suggest a period of around 100 days for the small amplitude variations near maximum brightness. At minimum brightness, these microvariations are considered to occur with periods as long as 195 days. The slower variations have been characterised with a period of 6.8 years, with an interval of 35–40 years between deep minima. The microvariations are similar to the brightness changes shown by α Cygni variables, which are less luminous hot supergiants. [6]
S Doradus variables (LBVs) show distinct quiescent and outburst states. During the quiescent phase, LBVs lie along a diagonal band in the H–R diagram called the S Doradus Instability Strip, with the more luminous examples having hotter temperatures. [34]
The standard theory is that LBV outbursts occur when the mass loss increases and an extremely dense stellar wind creates a pseudo-photosphere. The temperature drops until the wind opacity starts to decrease, meaning all LBV outbursts reach a temperature around 8,000–9,000 K. The bolometric luminosity during outbursts is considered to remain largely unchanged, but the visual luminosity increases as radiation shifts from the ultraviolet into the visual range. [35] Detailed investigations have shown that some LBVs appear to change luminosity from minimum to maximum. S Doradus has been calculated to be less luminous at maximum brightness (minimum temperature), possibly as a result of potential energy going into expansion of a substantial portion of the star. AG Carinae and HR Carinae show similar luminosity decreases in some studies, but in the most convincing case AFGL 2298 increased its luminosity during its outbursts. [8]
Rare larger eruptions can appear as long-lasting under-luminous supernovae, and have been termed supernova impostors. The cause of the eruptions is unknown, but the star survives and may experience multiple eruptions. Eta Carinae and P Cygni are the only known examples in the Milky Way, and S Doradus has not shown such an eruption. [36]
The temperature of an LBV is difficult to determine because the spectra are so peculiar and the standard colour calibrations don't apply, so the luminosity changes associated with brightness variations cannot be calculated accurately. Within the margins of error, it has often been assumed that the luminosity stays constant during all LBV outbursts. This is likely if the outburst consists only of an opaque stellar wind forming a pseudo-photosphere to mimic a larger cooler star. [38]
Better atmospheric physics and observations of luminosity changes during some LBV outbursts have cast doubt on the original models. [39] The atmosphere of S Doradus has been modeled in detail between a normal minimum at magnitude 10.2 in 1985 and a maximum at magnitude 9.0 in 1989. The temperature was calculated to drop from 20,000 K to 9,000 K, and the luminosity dropped from 1,400,000 L☉ to 708,000 L☉. This corresponds to an increase in the radius of the visible surface of the star from 100 R☉ to 380 R☉. [8] A simpler calculation of the variation from the deep 1965 minimum at magnitude 11.5 to the 1989 maximum gives a temperature drop from 35,000 K to 8,500 K, and the luminosity drop from 2,000,000 L☉ to 910,000 L☉. [6] For a brief period during the maximum in late 1999, the temperature dropped further to between 7,500 K and 8,500 K, without the brightness changing noticeably. This is normal in other LBVs at maximum and is as cool as they can get, but it has not been seen in S Doradus before, or since. [26] Observations of AG Carinae have shown that any luminosity changes between minimum and maximum may occur abruptly over a small temperature range, with the luminosity approximately constant during the rest of the light curve. [40]
The mass of an LBV is difficult to calculate directly unless it is in a binary system. The surface gravity changes dramatically and is difficult to measure from the peculiar spectral lines, and the radius is poorly defined. LBVs are thought to be the direct predecessors of Wolf–Rayet stars, but may be either just evolved from the main sequence or post-red supergiant stars with much lower masses. In the case of S Doradus, the current mass is likely to be in the range of 20–45 M☉. [7] [8]
Supergiants are among the most massive and most luminous stars. Supergiant stars occupy the top region of the Hertzsprung–Russell diagram with absolute visual magnitudes between about −3 and −8. The temperature range of supergiant stars spans from about 3,400 K to over 20,000 K.
Luminous blue variables (LBVs) are rare, massive and evolved stars that show unpredictable and sometimes dramatic variations in their spectra and brightness. They are also known as S Doradus variables after S Doradus, one of the brightest stars of the Large Magellanic Cloud.
P Cygni is a variable star in the constellation Cygnus. The designation "P" was originally assigned by Johann Bayer in Uranometria as a nova. Located about 5,300 light-years from Earth, it is a hypergiant luminous blue variable (LBV) star of spectral type B1-2 Ia-0ep that is one of the most luminous stars in the Milky Way.
A yellow hypergiant (YHG) is a massive star with an extended atmosphere, a spectral class from A to K, and, starting with an initial mass of about 20–60 solar masses, has lost as much as half that mass. They are amongst the most visually luminous stars, with absolute magnitude (MV) around −9, but also one of the rarest, with just 20 known in the Milky Way and six of those in just a single cluster. They are sometimes referred to as cool hypergiants in comparison with O- and B-type stars, and sometimes as warm hypergiants in comparison with red supergiants.
AG Carinae is a star in the constellation Carina. It is classified as a luminous blue variable (LBV) and is one of the most luminous stars in the Milky Way. The great distance and intervening dust mean that the star is not usually visible to the naked eye; its apparent brightness varies erratically between magnitude 5.7 and 9.0.
HR Carinae is a luminous blue variable star located in the constellation Carina. It is surrounded by a vast nebula of ejected nuclear-processed material because this star has a multiple shell expanding atmosphere. This star is among the most luminous stars in the Milky Way. It has very broad emission wings on the Balmer lines, reminiscent from the broad lines observed in the spectra of O and Wolf–Rayet stars. A distance of 5 kpc and a bolometric magnitude of −9.4 put HR Car among the most luminous stars of the galaxy.
WOH G64 is an unusual red supergiant (RSG) star in the Large Magellanic Cloud (LMC) satellite galaxy in the southern constellation of Dorado. It is the largest known star with a well-defined radius. It is also one of the most luminous and massive red supergiants, with a radius calculated to be around 1,540 times that of the Sun (R☉) and a luminosity around 282,000 times the solar luminosity (L☉).
A hypergiant (luminosity class 0 or Ia+) is a very rare type of star that has an extremely high luminosity, mass, size and mass loss because of its extreme stellar winds. The term hypergiant is defined as luminosity class 0 (zero) in the MKK system. However, this is rarely seen in literature or in published spectral classifications, except for specific well-defined groups such as the yellow hypergiants, RSG (red supergiants), or blue B(e) supergiants with emission spectra. More commonly, hypergiants are classed as Ia-0 or Ia+, but red supergiants are rarely assigned these spectral classifications. Astronomers are interested in these stars because they relate to understanding stellar evolution, especially star formation, stability, and their expected demise as supernovae. Notable examples of hypergiants include the Pistol Star, a blue hypergiant located close to the Galactic Center and one of the most luminous stars known; Rho Cassiopeiae, a yellow hypergiant that is one of the brightest to the naked eye; and Mu Cephei (Herschel's "Garnet Star"), one of the largest and brightest stars known.
R136a1 is one of the most massive and luminous stars known, at nearly 200 M☉ and nearly 4.7 million L☉, and is also one of the hottest, at around 46,000 K. It is a Wolf–Rayet star at the center of R136, the central concentration of stars of the large NGC 2070 open cluster in the Tarantula Nebula in the Large Magellanic Cloud. The cluster can be seen in the far southern celestial hemisphere with binoculars or a small telescope, at magnitude 7.25. R136a1 itself is 100 times fainter than the cluster and can only be resolved using speckle interferometry.
HD 5980 is a multiple star system on the outskirts of NGC 346 in the Small Magellanic Cloud (SMC) and is one of the brightest stars in the SMC.
HD 168607 is a blue hypergiant and luminous blue variable (LBV) star located in the constellation of Sagittarius, easy to see with amateur telescopes. It forms a pair with HD 168625, also a blue hypergiant and possible luminous blue variable, that can be seen at the south-east of M17, the Omega Nebula.
AE Andromedae is a luminous blue variable (LBV), a type of variable star. The star is one of the most luminous variables in M31, the Andromeda Galaxy.
V1429 Aquilae is a candidate luminous blue variable multiple star system located in the constellation of Aquila. It is often referred to by its Mount Wilson Observatory catalog number as MWC 314. It is a hot luminous star with strong emission lines in its spectrum.
R99 is a star in the Large Magellanic Cloud in the constellation Dorado. It is classified as a possible luminous blue variable and is one of the most luminous stars known.
HDE 316285 is a blue supergiant star in the constellation Sagittarius. It is a candidate luminous blue variable and lies about 6,000 light years away in the direction of the Galactic Center.
R85 is a candidate luminous blue variable located in the LH-41 OB association in the Large Magellanic Cloud.
R71 is a star in the Large Magellanic Cloud (LMC) in the constellation Mensa. It is classified as a luminous blue variable and is one of the most luminous stars in the LMC. It lies three arc-minutes southwest of the naked-eye star β Mensae.
AF Andromedae is a luminous blue variable (LBV), a type of variable star. The star is one of the most luminous variables in M31, the Andromeda Galaxy.
HD 37836 is a candidate luminous blue variable located in the Large Magellanic Cloud and one of the brightest stars in its galaxy.
B324 is a yellow hypergiant in the Triangulum Galaxy, located near the giant H II region IC 142 around 2.7 million light years away. It is the brightest star in the Triangulum Galaxy in terms of apparent magnitude.
{{cite book}}
: CS1 maint: DOI inactive as of November 2024 (link){{cite book}}
: CS1 maint: DOI inactive as of November 2024 (link)