N44 (emission nebula)

Last updated
N44
Emission nebula
superbubble
ESO-N44-central region-LMC-phot-31b-03-fullres.jpg
The central region of N44
Observation data: J2000.0 epoch
Right ascension 6.29h
Declination −61.36°
Distance~160,000-170,000  ly
Constellation Dorado
Physical characteristics
Radius ~500 [1]  ly
See also: Lists of nebulae
Picture combining views of N44 in visible light with images in infrared light and X-rays. LHA 120-N 44.jpg
Picture combining views of N44 in visible light with images in infrared light and X-rays.

N44 is an emission nebula with superbubble structure located in the Large Magellanic Cloud, a satellite galaxy of the Milky Way in the constellation Dorado. [3] [4] [5] Originally catalogued in Karl Henize's "Catalogue of H-alpha emission stars and nebulae in the Magellanic Clouds" of 1956, it is approximately 1,000 light-years wide and 160,000-170,000 light-years distant. [6] [7] [1] N44 has a smaller bubble structure inside known as N44F. The superbubble structure of N44 itself is shaped by the radiation pressure of a 40-star group located near its center; the stars are blue-white, very luminous, and incredibly powerful. [6] [1] N44F has been shaped in a similar manner; it has a hot, massive central star with an unusually powerful stellar wind that moves at 7 million kilometers per hour. This is because it loses material at 100 million times the rate of the Sun, or approximately 1,000,000,000,000,000 tons per year. However, varying density in the N44 nebula has caused the formation of several dust pillars that may conceal star formation. [6] This variable density is likely caused by previous supernovae in the vicinity of N44; many of the stars that have shaped it will eventually also end as supernovae. The past effects of supernovae are also confirmed by the fact that N44 emits x-rays. [4] [8]

Contents

N44 is classified as an emission nebula because it contains large regions of ionized hydrogen. However, the three strongest emission lines in the nebula are singly ionized oxygen atoms, which emit at an ultraviolet wavelength of 372.7 nm, doubly-ionized oxygen atoms, which emit at a blue-green wavelength of 500.7 nm, and neutral hydrogen atoms, which emit the hydrogen-alpha line at a red wavelength of 656.2 nm. [1] [9]

Related Research Articles

<span class="mw-page-title-main">Dorado</span> Constellation in the southern sky

Dorado is a constellation in the Southern Sky. It was named in the late 16th century and is now one of the 88 modern constellations. Its name refers to the mahi-mahi, which is known as dorado ("golden") in Spanish, although it has also been depicted as a swordfish. Dorado contains most of the Large Magellanic Cloud, the remainder being in the constellation Mensa. The South Ecliptic pole also lies within this constellation.

<span class="mw-page-title-main">Nebula</span> Body of interstellar clouds

A nebula is a distinct luminescent part of interstellar medium, which can consist of ionized, neutral, or molecular hydrogen and also cosmic dust. Nebulae are often star-forming regions, such as in the "Pillars of Creation" in the Eagle Nebula. In these regions, the formations of gas, dust, and other materials "clump" together to form denser regions, which attract further matter and eventually become dense enough to form stars. The remaining material is then thought to form planets and other planetary system objects.

<span class="mw-page-title-main">Interstellar medium</span> Matter and radiation in the space between the star systems in a galaxy

In astronomy, the interstellar medium (ISM) is the matter and radiation that exist in the space between the star systems in a galaxy. This matter includes gas in ionic, atomic, and molecular form, as well as dust and cosmic rays. It fills interstellar space and blends smoothly into the surrounding intergalactic space. The energy that occupies the same volume, in the form of electromagnetic radiation, is the interstellar radiation field. Although the density of atoms in the ISM is usually far below that in the best laboratory vacuums, the mean free path between collisions is short compared to typical interstellar lengths, so on these scales the ISM behaves as a gas (more precisely, as a plasma: it is everywhere at least slightly ionized), responding to pressure forces, and not as a collection of non-interacting particles.

<span class="mw-page-title-main">Emission nebula</span> Nebula formed of ionized gases that emit light of various wavelengths

An emission nebula is a nebula formed of ionized gases that emit light of various wavelengths. The most common source of ionization is high-energy ultraviolet photons emitted from a nearby hot star. Among the several different types of emission nebulae are H II regions, in which star formation is taking place and young, massive stars are the source of the ionizing photons; and planetary nebulae, in which a dying star has thrown off its outer layers, with the exposed hot core then ionizing them.

<span class="mw-page-title-main">Orion Nebula</span> Diffuse nebula in the constellation Orion

The Orion Nebula is a diffuse nebula situated in the Milky Way, being south of Orion's Belt in the constellation of Orion, and is known as the middle "star" in the "sword" of Orion. It is one of the brightest nebulae and is visible to the naked eye in the night sky with apparent magnitude 4.0. It is 1,344 ± 20 light-years (412.1 ± 6.1 pc) away and is the closest region of massive star formation to Earth. The M42 nebula is estimated to be 24 light-years across. It has a mass of about 2,000 times that of the Sun. Older texts frequently refer to the Orion Nebula as the Great Nebula in Orion or the Great Orion Nebula.

<span class="mw-page-title-main">H II region</span> Large, low-density interstellar cloud of partially ionized gas

An H II region or HII region is a region of interstellar atomic hydrogen that is ionized. It is typically in a molecular cloud of partially ionized gas in which star formation has recently taken place, with a size ranging from one to hundreds of light years, and density from a few to about a million particles per cubic centimetre. The Orion Nebula, now known to be an H II region, was observed in 1610 by Nicolas-Claude Fabri de Peiresc by telescope, the first such object discovered.

<span class="mw-page-title-main">Trifid Nebula</span> Emission nebula in the constellation Sagittarius

The Trifid Nebula is an H II region in the north-west of Sagittarius in a star-forming region in the Milky Way's Scutum–Centaurus Arm. It was discovered by Charles Messier on June 5, 1764. Its name means 'three-lobe'. The object is an unusual combination of an open cluster of stars, an emission nebula, a reflection nebula, and a dark nebula. Viewed through a small telescope, the Trifid Nebula is a bright and peculiar object, and is thus a perennial favorite of amateur astronomers.

<span class="mw-page-title-main">NGC 604</span> H II region inside the Triangulum Galaxy

NGC 604 is an H II region inside the Triangulum Galaxy. It was discovered by William Herschel on September 11, 1784. It is among the largest H II regions in the Local Group of galaxies; at the galaxy's estimated distance of 2.7 million light-years, its longest diameter is roughly 1,520 light years (~460 parsecs), over 40 times the size of the visible portion of the Orion Nebula. It is over 6,300 times more luminous than the Orion Nebula, and if it were at the same distance it would outshine Venus. Its gas is ionized by a cluster of massive stars at its center with 200 stars of spectral type O and WR, a mass of 105 solar masses, and an age of 3.5 million years; however, unlike the Large Magellanic Cloud's Tarantula Nebula central cluster (R136), NGC 604's one is much less compact and more similar to a large stellar association.

<span class="mw-page-title-main">Hydrogen-alpha</span> Deep-red spectral line of hydrogen

Hydrogen-alpha, typically shortened to H-alpha or , is a deep-red visible spectral line of the hydrogen atom with a wavelength of 656.28 nm in air and 656.46 nm in vacuum. It is the first spectral line in the Balmer series and is emitted when an electron falls from a hydrogen atom's third- to second-lowest energy level. H-alpha has applications in astronomy where its emission can be observed from emission nebulae and from features in the Sun's atmosphere, including solar prominences and the chromosphere.

<span class="mw-page-title-main">Cone Nebula</span> H II region in the constellation Monoceros

The Cone Nebula is an H II region in the constellation of Monoceros. It was discovered by William Herschel on December 26, 1785, at which time he designated it H V.27. The nebula is located about 830 parsecs or 2,700 light-years away from Earth. The Cone Nebula forms part of the nebulosity surrounding the Christmas Tree Cluster. The designation of NGC 2264 in the New General Catalogue refers to both objects and not the nebula alone.

<span class="mw-page-title-main">Crescent Nebula</span> Emission nebula in the constellation Cygnus

The Crescent Nebula is an emission nebula in the constellation Cygnus, about 5000 light-years away from Earth. It was discovered by William Herschel in 1792. It is formed by the fast stellar wind from the Wolf-Rayet star WR 136 colliding with and energizing the slower moving wind ejected by the star when it became a red giant around 250,000 to 400,000 years ago. The result of the collision is a shell and two shock waves, one moving outward and one moving inward. The inward moving shock wave heats the stellar wind to X-ray-emitting temperatures.

<span class="mw-page-title-main">Superbubble</span> Cavity hundreds of light years across created by strong stellar winds in a galaxy

In astronomy a superbubble or supershell is a cavity which is hundreds of light years across and is populated with hot (106 K) gas atoms, less dense than the surrounding interstellar medium, blown against that medium and carved out by multiple supernovae and stellar winds. The winds, passage and gravity of newly born stars strip superbubbles of any other dust or gas. The Solar System lies near the center of an old superbubble, known as the Local Bubble, whose boundaries can be traced by a sudden rise in dust extinction of exterior stars at distances greater than a few hundred light years.

<span class="mw-page-title-main">NGC 6302</span> Bipolar planetary nebula in the constellation Scorpius

NGC 6302 is a bipolar planetary nebula in the constellation Scorpius. The structure in the nebula is among the most complex ever observed in planetary nebulae. The spectrum of NGC 6302 shows that its central star is one of the hottest stars known, with a surface temperature in excess of 250,000 degrees Celsius, implying that the star from which it formed must have been very large.

<span class="mw-page-title-main">NGC 2080</span> Emission nebula in the constellation Dorado

NGC 2080, also known as the Ghost Head Nebula, is a star-forming region and emission nebula to the south of the 30 Doradus (Tarantula) nebula, in the southern constellation Dorado. It belongs to the Large Magellanic Cloud, a satellite galaxy to the Milky Way, which is at a distance of 168,000 light years. NGC 2080 was discovered by John Frederick William Herschel in 1834. The Ghost Head Nebula has a diameter of 50 light-years and is named for the two distinct white patches it possesses, called the "eyes of the ghost". The western patch, called A1, has a bubble in the center which was created by the young, massive star it contains. The eastern patch, called A2, has several young stars in a newly formed cluster, but they are still obscured by their originating dust cloud. Because neither dust cloud has dissipated due to the stellar radiation, astronomers have deduced that both sets of stars formed within the past 10,000 years. These stars together have begun to create a bubble in the nebula with their outpourings of material, called stellar wind.

<span class="mw-page-title-main">NGC 6334</span> Emission nebula in the constellation Scorpius

NGC 6334, colloquially known as the Cat's Paw Nebula, or Gum 64, is an emission nebula and star-forming region located in the constellation Scorpius. NGC 6334 was discovered by astronomer John Herschel in 1837, who observed it from the Cape of Good Hope in South Africa. The nebula is located in the Carina–Sagittarius Arm of the Milky Way, at a distance of approximately 5.5 kilolight-years from the Sun.

<span class="mw-page-title-main">Little Ghost Nebula</span> Planetary nebula in the constellation Ophiuchus

Little Ghost Nebula, also known as NGC 6369, is a planetary nebula in the constellation Ophiuchus. It was discovered by William Herschel.

<span class="mw-page-title-main">AB7</span> Binary star in the Small Magellanic Cloud in the constellation Tucana

AB7, also known as SMC WR7, is a binary star in the Small Magellanic Cloud. A Wolf–Rayet star and a supergiant companion of spectral type O orbit in a period of 19.56 days. The system is surrounded by a ring-shaped nebula known as a bubble nebula.

<span class="mw-page-title-main">Abell 36</span> Planetary nebula in the constellation Virgo

Abell 36 is a planetary nebula located 780 light years away in the constellation of Virgo.

<span class="mw-page-title-main">N119</span> Spiral shaped H II region in the constellation Dorado

N119 is a spiral-shaped H II region in the Large Magellanic Cloud. Its dimensions are large, at 131 x 175 pc. It contains several luminous stars including S Doradus, LH41-1042, and LMC195-1. Its peculiar S-shaped structure is difficult to explain with classical models.

References

  1. 1 2 3 4 "Roses in the Southern Sky". ESO. 3 November 2003. Retrieved 7 May 2012.
  2. "A Surprising Superbubble". ESO Picture of the Week. Retrieved 3 September 2012.
  3. H. Nakajima (26 September 2005). "Exploring High Energy Activities in the Superbubble N44 With XMM-NEWTON" (PDF). The X-Ray Universe Symposium. H. Yamaguchi, M. Ueno, A. Bamba, and K. Koyama. European Space Agency. Archived from the original (PDF) on 14 July 2014. Retrieved 10 May 2012.
  4. 1 2 Nemiroff, R.; Bonnell, J., eds. (6 February 2006). "The N44 Superbubble". Astronomy Picture of the Day . NASA . Retrieved 10 May 2012.
  5. Michaud, Peter (4 January 2006). "Gemini Looks Down the Mouth of an Interstellar Cavern". Gemini Observatory. Retrieved 10 May 2012.
  6. 1 2 3 Wilkins, Jamie; Dunn, Robert (2006). 300 Astronomical Objects: A Visual Reference to the Universe (1st ed.). Buffalo, New York: Firefly Books. ISBN   978-1-55407-175-3.
  7. "N44 in the Large Magellanic Cloud (Central Region)". ESO. 3 November 2003. Retrieved 7 May 2012.
  8. "Detail of N44 in the Large Magellanic Cloud". ESO. 22 June 1999. Retrieved 7 May 2012.
  9. Nemiroff, R.; Bonnell, J., eds. (13 February 2006). "The N44 Emission Nebula". Astronomy Picture of the Day . NASA . Retrieved 7 May 2012.

Commons-logo.svg Media related to N44 at Wikimedia Commons