"},"dec":{"wt":"{{DEC|−69|06|04.83}}"},"appmag_v":{"wt":"12.86"}},"i":2}},"\n",{"template":{"target":{"wt":"Starbox character\n","href":"./Template:Starbox_character"},"params":{"type":{"wt":"[[Wolf–Rayet star]]"},"class":{"wt":"[[Wolf–Rayet star|WN5h]]{{cite journal|bibcode=2016MNRAS.458..624C|arxiv=1603.04994|title=The R136 star cluster dissected with Hubble Space Telescope/STIS. I. Far-ultraviolet spectroscopic census and the origin of He II λ1640 in young star clusters|journal=Monthly Notices of the Royal Astronomical Society|volume=458|issue=1|pages=624–659|last1=Crowther|first1=Paul A.|last2=Caballero-Nieves|first2=S. M.|last3=Bostroem|first3=K. A.|last4=Maíz Apellániz|first4=J.|last5=Schneider|first5=F. R. N.|last6=Walborn|first6=N. R.|last7=Angus|first7=C. R.|last8=Brott|first8=I.|last9=Bonanos|first9=A.|last10=De Koter|first10=A.|last11=De Mink|first11=S. E.|author11-link= Selma de Mink |last12=Evans|first12=C. J.|last13=Gräfener|first13=G.|last14=Herrero|first14=A.|last15=Howarth|first15=I. D.|last16=Langer|first16=N.|last17=Lennon|first17=D. J.|last18=Puls|first18=J.|last19=Sana|first19=H.|last20=Vink|first20=J. S.|year=2016|doi=10.1093/mnras/stw273|doi-access=free }}"}},"i":3}},"\n",{"template":{"target":{"wt":"Starbox astrometry\n","href":"./Template:Starbox_astrometry"},"params":{"radial_v":{"wt":""},"prop_mo_ra":{"wt":""},"prop_mo_dec":{"wt":""},"parallax":{"wt":""},"p_error":{"wt":""},"parallax_footnote":{"wt":""},"dist_ly":{"wt":"163,000"},"dist_pc":{"wt":"49,970{{cite journal|last=Pietrzyński|first=G|author2=D. Graczyk |author3=W. Gieren |author4=I. B. Thompson |author5=B. Pilecki |author6=A. Udalski |author7=I. Soszyński |display-authors=etal |title=An eclipsing-binary distance to the Large Magellanic Cloud accurate to two per cent|journal=Nature|date=7 March 2013|volume=495|issue=7439|pages=76–79|doi=10.1038/nature11878|pmid=23467166|arxiv = 1303.2063 |bibcode = 2013Natur.495...76P |s2cid=4417699}}"},"absmag_v":{"wt":"−7.9{{Cite journal|arxiv=1308.3412v1 |last1= Doran |first1= E. I. |title= The VLT-FLAMES Tarantula Survey - XI. A census of the hot luminous stars and their feedback in 30 Doradus |journal= Astronomy & Astrophysics |volume= 558 |pages= A134 |last2= Crowther |first2= P. A. |last3= de Koter |first3= A. |last4= Evans |first4= C. J. |last5= McEvoy |first5= C. |last6= Walborn |first6= N. R. |last7= Bastian |first7= N. |last8= Bestenlehner |first8= J. M. |last9= Grafener |first9= G. |last10= Herrero |first10= A. |last11= Kohler |first11= K. |last12= Maiz Apellaniz |first12= J. |last13= Najarro |first13= F. |last14= Puls |first14= J. |last15= Sana |first15= H. |last16= Schneider |first16= F. R. N. |last17= Taylor |first17= W. D. |last18= van Loon |first18= J. Th. |last19= Vink |first19= J. S. |date= 2013 |doi= 10.1051/0004-6361/201321824 |bibcode = 2013A&A...558A.134D |s2cid= 118510909 }}"},"space_v_u":{"wt":""},"space_v_v":{"wt":""},"space_v_w":{"wt":""}},"i":4}},"\n",{"template":{"target":{"wt":"Starbox orbit\n","href":"./Template:Starbox_orbit"},"params":{"reference":{"wt":""},"period_unitless":{"wt":"17.2051 days"},"eccentricity":{"wt":"{{val|0.31|0.08}}"},"k1":{"wt":"{{val|51|9}}"}},"i":5}},"\n",{"template":{"target":{"wt":"Starbox detail\n","href":"./Template:Starbox_detail"},"params":{"source":{"wt":"{{cite journal |title=An excess of massive stars in the local 30 Doradus starburst |year=2018 |bibcode=2018Sci...359...69S |arxiv=1801.03107 |doi=10.1126/science.aan0106 |journal=Science |volume=359 |issue=6371 |pages=69–71 |last1=Schneider |first1= F. R. N. |last2=Sana |first2=H. |last3=Evans |first3=C. J. |last4=Bestenlehner |first4=J. M. |last5=Castro |first5=N. |last6=Fossati |first6=L. |last7=Gräfener |first7=G. |last8=Langer |first8=N. |last9=Ramírez-Agudelo |first9=O. H. |last10=Sabín-Sanjulián |first10=C. |last11=Simón-Díaz |first11=S. |last12=Tramper |first12=F. |last13=Crowther |first13=P. A. |last14=de Koter |first14=A. |last15=de Mink |first15=S. E. |last16=Dufton |first16=P. L. |last17=Garcia |first17=M. |last18=Gieles |first18=M. |last19=Hénault-Brunet |first19=V. |last20=Herrero |first20=A. |last21=Izzard |first21= R. G. |last22=Kalari |first22= V. |last23=Lennon |first23= D. J. |last24=Maíz Apellániz |first24= J. |last25=Markova |first25= N. |last26=Najarro |first26= F. |last27=Podsiadlowski |first27= Ph. |last28=Puls |first28= J. |last29=Taylor |first29= W. D. |last30=van Loon |first30= J. Th. |last31=Vink |first31= J. S. |last32=Norman |first32= C. |pmid=29302009 |s2cid=206658504 }}"},"mass":{"wt":"142"},"luminosity":{"wt":"3,800,000"},"radius":{"wt":"40.7"},"temperature":{"wt":"42,170"},"rotational_velocity":{"wt":"<200"},"age_myr":{"wt":"1.8"}},"i":6}},"\n",{"template":{"target":{"wt":"Starbox catalog\n","href":"./Template:Starbox_catalog"},"params":{"names":{"wt":"[[BAT99]] 112, RMC 136c, VFTS 1025"}},"i":7}},"\n",{"template":{"target":{"wt":"Starbox reference\n","href":"./Template:Starbox_reference"},"params":{"Simbad":{"wt":"RMC+136c"},"ARICNS":{"wt":""}},"i":8}},"\n",{"template":{"target":{"wt":"Starbox end","href":"./Template:Starbox_end"},"params":{},"i":9}}]}" id="mwBA">
R136c
The bright star to the left of the cluster core is R136c.
R136c is a likely binary star located in R136, a tight knot of stars at the centre of NGC 2070, an open cluster weighing 450,000 solar masses and containing 10,000 stars.[6] At 142M☉ and 3.8 million L☉, it is the one of the most massive stars known and one of the most luminous, along with being one of the hottest, at over 40,000K. It was first resolved and named by Feitzinger in 1980, along with R136a and R136b.[7]
R136c is a Wolf–Rayet star of the spectral type WN5h and with a temperature of 42,170K, making it one of hottest stars known. It is the one of the most massive stars known, with a mass of 142M☉, and it is one of the most luminous stars known, with a luminosity of 3.8 million L☉. The extreme luminosity is produced by the CNO fusion process in its highly compressed hot core. Typical of all Wolf–Rayet stars, R136c has been losing mass by means of a strong stellar wind with speeds over 2,000km/s and mass loss rates in excess of 10−5 solar masses per year.[8]
It is strongly suspected to be a binary, due to the detection of hard x-ray emission typical of colliding wind binaries, but the companion is thought to make only a small contribution to the total luminosity.[9]Absorption lines in the spectrum, tentatively assigned to the companion, indicate that it is considerably more massive than the Wolf-Rayet component. An orbit has been derived, but with low confidence and even the period is uncertain, between 5 and 47 days.[4]
Evolution
R136c is so energetic that it has already lost a substantial fraction of its initial mass, even though it is only a few million years old. It is still effectively on the main sequence, fusing hydrogen at its core via the CNO cycle, but it has convected and mixed fusion products to the surface and these create a powerful stellar wind and emission spectrum normally only seen in highly evolved stars.[8]
Its fate depends on the amount of mass it loses before its core collapses, but is likely to result in a supernova. The most recent models for single star evolution at near-solar metallicities suggest that the most massive stars explode as highly stripped type Ic supernovae, although different outcomes are possible for binaries. Some of these supernovae are expected to produce a type of gamma-ray burst and the expected remnant is a black hole.[10]
References
1 2 3 4 Doran, E. I.; Crowther, P. A.; de Koter, A.; Evans, C. J.; McEvoy, C.; Walborn, N. R.; Bastian, N.; Bestenlehner, J. M.; Grafener, G.; Herrero, A.; Kohler, K.; Maiz Apellaniz, J.; Najarro, F.; Puls, J.; Sana, H.; Schneider, F. R. N.; Taylor, W. D.; van Loon, J. Th.; Vink, J. S. (2013). "The VLT-FLAMES Tarantula Survey - XI. A census of the hot luminous stars and their feedback in 30 Doradus". Astronomy & Astrophysics. 558: A134. arXiv:1308.3412v1. Bibcode:2013A&A...558A.134D. doi:10.1051/0004-6361/201321824. S2CID118510909.
1 2 Shenar, T.; Sana, H.; Crowther, P. A.; Bostroem, K. A.; Mahy, L.; Najarro, F.; Oskinova, L.; Sander, A. A. C. (2023). "Constraints on the multiplicity of the most massive stars known: R136 a1, a2, a3, and C". Astronomy and Astrophysics. 679: A36. arXiv:2309.13113. Bibcode:2023A&A...679A..36S. doi:10.1051/0004-6361/202346930.
1 2 Schneider, F. R. N.; Sana, H.; Evans, C. J.; Bestenlehner, J. M.; Castro, N.; Fossati, L.; Gräfener, G.; Langer, N.; Ramírez-Agudelo, O. H.; Sabín-Sanjulián, C.; Simón-Díaz, S.; Tramper, F.; Crowther, P. A.; de Koter, A.; de Mink, S. E.; Dufton, P. L.; Garcia, M.; Gieles, M.; Hénault-Brunet, V.; Herrero, A.; Izzard, R. G.; Kalari, V.; Lennon, D. J.; Maíz Apellániz, J.; Markova, N.; Najarro, F.; Podsiadlowski, Ph.; Puls, J.; Taylor, W. D.; van Loon, J. Th.; Vink, J. S.; Norman, C. (2018). "An excess of massive stars in the local 30 Doradus starburst". Science. 359 (6371): 69–71. arXiv:1801.03107. Bibcode:2018Sci...359...69S. doi:10.1126/science.aan0106. PMID29302009. S2CID206658504.
↑ Feitzinger, J. V.; Schlosser, W.; Schmidt-Kaler, T.; Winkler, C. (1980). "The central object R 136 in the gas nebula 30 Doradus - Structure, color, mass and excitation parameter". Astronomy and Astrophysics. 84 (1–2): 50. Bibcode:1980A&A....84...50F.
This page is based on this Wikipedia article Text is available under the CC BY-SA 4.0 license; additional terms may apply. Images, videos and audio are available under their respective licenses.