TOI-700 e

Last updated
TOI-700 e
TOI700e art.jpg
TOI-700 e concept art. The large blue dot on the top left is TOI-700 d.
Discovery
Discovered by TESS
Discovery date2023
Transit
Orbital characteristics
0.0134
Eccentricity 0.06
27.8 d
Star TOI-700
Physical characteristics
Mean radius
0.953 R🜨
Mass 0.818 MEarth

    TOI-700 e is the second outermost exoplanet orbiting TOI-700, a red dwarf star in the constellation of Dorado.

    Contents

    Host star

    TOI-700 is a red dwarf of spectral class M that is about 40% the mass and radius, and very roughly 50% of the temperature of the Sun. [1] The star is bright with low levels of stellar activity. Over the 11 sectors observed with TESS, the star does not show a single white-light flare. The low rotation rate is also an indicator of low stellar activity. [2]

    Orbit

    TOI-700 e orbits its host star with an orbital period of 27.8 days, comparable with the Moon's orbital period of 27.5 Earth days. It has an orbital radius of about 0.0134  AU (2.00 million  km ; 1.25 million  mi ), less than half of that of Mercury to the Sun in the Solar System. It receives about 130% of Earth's sunlight from its host star.[ citation needed ]

    Near orbital resonances

    TOI-700 e is in a near orbital resonance with TOI-700 c and TOI-700 d. It is in a near 5:7 resonance with TOI-700 c and a near 3:4 resonance with TOI-700 d.[ citation needed ]

    Discovery

    Size comparison
    EarthTOI-700 e
    Small Earth.jpg Exoplanet sphere.jpg

    In November 2021, a fourth possible planet, Earth-sized and receiving approximately 30% more flux from TOI-700 than Earth does from the Sun, was found at the inner edge of the habitable zone of TOI-700. [3] In January 2023 the existence of this planet, designated TOI-700 e, was confirmed. [4]

    Discovered in 2023, TOI-700 e is terrestrial exoplanet that NASA claims to be an "earth-like" planet, with 95 percent of the Earth’s radius. Discovered by NASA's TESS (Transiting Exoplanet Survey Satellite), TOI-700 e has mass of about 0.818 Earths and takes 27.8 days to orbit once around its star. [5] The planet is in a habitable zone distance from the M-type star TOI-700 it orbits, leading NASA scientists to believe that there is potential for liquid water on its surface. Ten percent smaller than its neighboring planet TOI-700 d, both are at a distance from their sun to be considered habitable, however, TESS requires an additional year to acquire more data about the exoplanets. [6] Being one in only about a dozen habitable zone planets known, further research and data collection of the TOI-700 solar system is important for understanding Earth-like planets. [7]

    Related Research Articles

    <span class="mw-page-title-main">Habitable zone</span> Orbits where planets may have liquid surface water

    In astronomy and astrobiology, the habitable zone (HZ), or more precisely the circumstellar habitable zone (CHZ), is the range of orbits around a star within which a planetary surface can support liquid water given sufficient atmospheric pressure. The bounds of the HZ are based on Earth's position in the Solar System and the amount of radiant energy it receives from the Sun. Due to the importance of liquid water to Earth's biosphere, the nature of the HZ and the objects within it may be instrumental in determining the scope and distribution of planets capable of supporting Earth-like extraterrestrial life and intelligence.

    <span class="mw-page-title-main">Super-Earth</span> Planet with a mass between Earth and Uranus

    A Super-Earth is a type of exoplanet with a mass higher than Earth's, but substantially below those of the Solar System's ice giants, Uranus and Neptune, which are 14.5 and 17 times Earth's, respectively. The term "super-Earth" refers only to the mass of the planet, and so does not imply anything about the surface conditions or habitability. The alternative term "gas dwarfs" may be more accurate for those at the higher end of the mass scale, although "mini-Neptunes" is a more common term.

    <span class="mw-page-title-main">Transiting Exoplanet Survey Satellite</span> NASA satellite of the Explorer program

    Transiting Exoplanet Survey Satellite is a space telescope for NASA's Explorer program, designed to search for exoplanets using the transit method in an area 400 times larger than that covered by the Kepler mission. It was launched on 18 April 2018, atop a Falcon 9 launch vehicle and was placed into a highly elliptical 13.70-day orbit around the Earth. The first light image from TESS was taken on 7 August 2018, and released publicly on 17 September 2018.

    <span class="mw-page-title-main">Discoveries of exoplanets</span> Detecting planets located outside the Solar System

    An exoplanet is a planet located outside the Solar System. The first evidence of an exoplanet was noted as early as 1917, but was not recognized as such until 2016; no planet discovery has yet come from that evidence. What turned out to be the first detection of an exoplanet was published among a list of possible candidates in 1988, though not confirmed until 2003. The first confirmed detection came in 1992, with the discovery of terrestrial-mass planets orbiting the pulsar PSR B1257+12. The first confirmation of an exoplanet orbiting a main-sequence star was made in 1995, when a giant planet was found in a four-day orbit around the nearby star 51 Pegasi. Some exoplanets have been imaged directly by telescopes, but the vast majority have been detected through indirect methods, such as the transit method and the radial-velocity method. As of 1 December 2023, there are 5,550 confirmed exoplanets in 4,089 planetary systems, with 887 systems having more than one planet. This is a list of the most notable discoveries.

    Kepler-20 is a star about 934 light-years from Earth in the constellation Lyra with a system of at least five, and possibly six, known planets. The apparent magnitude of this star is 12.51, so it cannot be seen with the unaided eye. Viewing it requires a telescope with an aperture of 15 cm (6 in) or more. It is slightly smaller than the Sun, with 94% of the Sun's radius and about 91% of the Sun's mass. The effective temperature of the photosphere is slightly cooler than that of the Sun at 5466 K, giving it the characteristic yellow hue of a stellar class G8 star. The abundance of elements other than hydrogen or helium, what astronomers term the metallicity, is approximately the same as in the Sun. It may be older than the Sun, although the margin of error here is relatively large.

    <span class="mw-page-title-main">Kepler-69c</span> Super-Earth orbiting Kepler-69

    Kepler-69c is a confirmed super-Earth extrasolar planet, likely rocky, orbiting the Sun-like star Kepler-69, the outermore of two such planets discovered by NASA's Kepler spacecraft. It is located about 2,430 light-years from Earth.

    <span class="mw-page-title-main">Kepler-62e</span> Habitable-zone super-Earth planet orbiting Kepler-62

    Kepler-62e is a super-Earth exoplanet discovered orbiting within the habitable zone of Kepler-62, the second outermost of five such planets discovered by NASA's Kepler spacecraft. Kepler-62e is located about 990 light-years from Earth in the constellation of Lyra. The exoplanet was found using the transit method, in which the dimming effect that a planet causes as it crosses in front of its star is measured. Kepler-62e may be a terrestrial or ocean-covered planet; it lies in the inner part of its host star's habitable zone.

    <span class="mw-page-title-main">Kepler-62f</span> Super-Earth orbiting Kepler-62

    Kepler-62f is a super-Earth exoplanet orbiting within the habitable zone of the star Kepler-62, the outermost of five such planets discovered around the star by NASA's Kepler spacecraft. It is located about 980 light-years from Earth in the constellation of Lyra.

    Kepler-62d is the third innermost and the largest exoplanet discovered orbiting the star Kepler-62, with a size roughly twice the diameter of Earth. It was found using the transit method, in which the dimming that a planet causes as it crosses in front of its star is measured. Its stellar flux is 15 ± 2 times Earth's. Due to its closer orbit to its star, it is a super-Venus or, if it has a volatile composition, a hot Neptune, with an estimated equilibrium temperature of 510 K, too hot to sustain life on its surface.

    Kepler-62b is the innermost and the second smallest discovered exoplanet orbiting the star Kepler-62, with a diameter roughly 30% larger than Earth. It was found using the transit method, in which the dimming effect that a planet causes as it crosses in front of its star is measured. It is likely to have an equilibrium temperature slightly higher than the surface temperature of Venus, high enough to melt some types of metal. Its stellar flux is 70 ± 9 times Earth's.

    <span class="mw-page-title-main">Kepler-186f</span> Terrestrial exoplanet orbiting Kepler-186

    Kepler-186f is an Earth-sized exoplanet orbiting within the habitable zone of the red dwarf star Kepler-186, the outermost of five such planets discovered around the star by NASA's Kepler spacecraft. It is located about 580 light-years from Earth in the constellation of Cygnus.

    <span class="mw-page-title-main">Kepler-442b</span> Super-Earth orbiting Kepler-442

    Kepler-442b is a confirmed near-Earth-sized exoplanet, likely rocky, orbiting within the habitable zone of the K-type main-sequence star Kepler-442, about 1,206 light-years (370 pc) from Earth in the constellation of Lyra.

    <span class="mw-page-title-main">Kepler-452b</span> Super-Earth exoplanet orbiting Kepler-452

    Kepler-452b is a super-Earth exoplanet orbiting within the inner edge of the habitable zone of the sun-like star Kepler-452 and is the only planet in the system discovered by Kepler. It is located about 1,800 light-years (550 pc) from Earth in the constellation of Cygnus.

    <span class="mw-page-title-main">Kepler-452</span> G-type main-sequence star in the constellation Cygnus

    Kepler-452 is a G-type main-sequence star located about 1,800 light-years away from Earth in the Cygnus constellation. Although similar in temperature to the Sun, it is 20% brighter, 3.7% more massive and 11% larger. Alongside this, the star is approximately six billion years old and possesses a high metallicity. Thus, Kepler-452 can be considered a solar twin, although it could be considered a solar analog due to its age.

    <span class="mw-page-title-main">TRAPPIST-1e</span> Earth-size exoplanet orbiting TRAPPIST-1

    TRAPPIST-1e, also designated as 2MASS J23062928-0502285 e, is a rocky, close-to-Earth-sized exoplanet orbiting within the habitable zone around the ultracool dwarf star TRAPPIST-1, located 40.7 light-years away from Earth in the constellation of Aquarius. Astronomers used the transit method to find the exoplanet, a method that measures the dimming of a star when a planet crosses in front of it.

    <span class="mw-page-title-main">K2-288Bb</span> Mini-Neptune orbiting K2-288B

    K2-288Bb is a super-Earth or mini-Neptune exoplanet orbiting in the habitable zone of K2-288B, a low-mass M-dwarf star in a binary star system in the constellation of Taurus about 226 light-years from Earth. It was discovered by citizen scientists while analysing data from the Kepler spacecraft's K2 mission, and was announced on 7 January 2019. K2-288 is the third transiting planet system identified by the Exoplanet Explorers program, after the six planets of K2-138 and the three planets of K2-233.

    TOI-700 is a red dwarf 101.4 light-years away from Earth located in the Dorado constellation that hosts TOI-700 d, the first Earth-sized exoplanet in the habitable zone discovered by the Transiting Exoplanet Survey Satellite (TESS).

    <span class="mw-page-title-main">TOI-700 d</span> Goldilocks terrestrial planet orbiting TOI-700

    TOI-700 d is a near-Earth-sized exoplanet, likely rocky, orbiting within the habitable zone of the red dwarf TOI-700, the outermost planet within the system. It is located roughly 101.4 light-years (31.1 pc) away from Earth in the constellation of Dorado. The exoplanet is the first Earth-sized exoplanet in the habitable zone discovered by the Transiting Exoplanet Survey Satellite (TESS).

    <span class="mw-page-title-main">TOI-2180 b</span> Jovian-sized exoplanet orbiting TOI-2180

    TOI-2180 b is a giant exoplanet orbiting the G-type star TOI-2180, also known as HD 238894. It was discovered with the help of the Transiting Exoplanet Survey Satellite and is currently the exoplanet with the longest orbital period TESS was able to uncover. TOI-2180 b orbits its host star every 260.16 days.

    <span class="mw-page-title-main">TOI-2257 b</span> Neptune-like exoplanet

    TOI-2257 b is an extremely eccentric (0.496) exoplanet in or near the circumstellar habitable zone of the star TOI-2257, 188 light-years away. It is likely a sub-Neptune exoplanet, with a mass of 5.71 Mearth and a radius of 2.19 Rearth. As a small planet in the habitable zone, it is included in the Planetary Habitability Laboratory's list of potentially habitable exoplanets.

    References

    1. Wall, Mike (6 January 2020). "NASA's TESS Planet Hunter Finds Its 1st Earth-Size World in 'Habitable Zone'". Space.com . Archived from the original on 3 May 2020. Retrieved 6 January 2020.
    2. Gilbert, Emily A.; Barclay, Thomas; Schlieder, Joshua E.; Quintana, Elisa V.; Hord, Benjamin J.; Kostov, Veselin B.; Lopez, Eric D.; Rowe, Jason F.; Hoffman, Kelsey; Walkowicz, Lucianne M.; Silverstein, Michele L. (2020-01-03). "The First Habitable Zone Earth-sized Planet from TESS. I: Validation of the TOI-700 System". The Astronomical Journal. 160 (3): 116. arXiv: 2001.00952 . Bibcode:2020AJ....160..116G. doi: 10.3847/1538-3881/aba4b2 . S2CID   209862554.
    3. "ExoFOP TIC 150428135". exofop.ipac.caltech.edu. Archived from the original on 20 April 2020. Retrieved 26 November 2021.
    4. "Second Earth-sized World Found in System's Habitable Zone". exoplanets.nasa.gov. NASA. 10 January 2023. Archived from the original on 10 January 2023. Retrieved 10 January 2023.
    5. Kazmierczak, Jeanette (2023-01-09). "NASA's TESS Discovers Planetary System's Second Earth-Size World". NASA. Archived from the original on 2023-03-15. Retrieved 2023-03-20.
    6. Kazmierczak, Jeanette (2023-01-09). "NASA's TESS Discovers Planetary System's Second Earth-Size World". NASA. Archived from the original on 2023-03-31. Retrieved 2023-04-16.
    7. Haghighipour, Nader (2015), "Kepler 186f: First Earth-Sized Planet in Habitable Zone", in Gargaud, Muriel; Irvine, William M.; Amils, Ricardo; Cleaves, Henderson James (eds.), Encyclopedia of Astrobiology, Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 1325–1326, Bibcode:2015enas.book.1530H, doi:10.1007/978-3-662-44185-5_5294, ISBN   978-3-662-44184-8, archived from the original on 2023-10-05, retrieved 2023-04-16