TRAPPIST-1c

Last updated

TRAPPIST-1c
Rocky Exoplanet TRAPPIST-1 c (Artist Concept).jpg
Artist's impression of TRAPPIST-1c (June 2023) with TRAPPIST-1b in the background
Discovery [1]
Discovered by Michaël Gillon et al.
Discovery site TRAPPIST
Discovery dateMay 2, 2016
Transit
Orbital characteristics [2]
0.01580±0.00013  AU
Eccentricity 0.00654±0.00188 [3]
2.421937±0.000018  d
Inclination 89.778°±0.118°
282.45°±17.10° [3]
Star TRAPPIST-1 [4]
Physical characteristics [2]
Mean radius
1.097+0.014
−0.012
  R🜨
Mass 1.308±0.056  M🜨
Mean density
5.447+0.222
−0.235
  g/cm3
1.086±0.043 g
10.65±0.42  m/s2
Temperature 339.7±3.3  K (66.6 °C; 151.8 °F, equilibrium) [5]
380±31  K (107 °C; 224 °F, surface) [6]
Atmosphere
Composition by volume None or extremely thin [7] [6]

    TRAPPIST-1c, also designated as 2MASS J23062928-0502285 c, is a mainly rocky exoplanet orbiting around the ultracool dwarf star TRAPPIST-1, located 40.7 light-years (12.5 parsecs ) away from Earth in the constellation Aquarius. It is the third most massive and third largest planet of the system, with about 131% the mass and 110% the radius of Earth. [2] Its density indicates a primarily rocky composition, and observations by the James Webb Space Telescope announced in 2023 suggests against a thick CO2 atmosphere, however this does not exclude a thick abiotic oxygen-dominated atmosphere as is hypothesized to be common around red dwarf stars.[ citation needed ]

    Contents

    Physical characteristics

    Mass, radius, and temperature

    TRAPPIST-1c was observed with the transit method, which enabled scientists to calculate its radius. Transit-timing variations and computer simulations were able to determine the mass, density, and gravity of the planet. TRAPPIST-1c is the third-largest planet of the TRAPPIST-1 system, with a radius of 1.097  R🜨 . It is also the third-most massive of the system, with a mass of 1.308  M🜨 , slightly lower than that of the next most massive, TRAPPIST-1g. [2] Initial estimates suggested that TRAPPIST-1c has a lower density (4.89 g/cm3) and gravity (0.966g) than Earth, consistent with a rock-based composition and a thick, Venus-like atmosphere. [3] [8] However, refined density estimates show that the planet's density is similar to Earth. [2]

    TRAPPIST-1c's atmosphere was expected to be large enough to raise its surface temperature far above the calculated 334.8 K (61.7 °C; 143.0 °F) equilibrium temperature. [3] [8] However, an observation of the secondary eclipse of TRAPPIST-1c by the James Webb Space Telescope, announced in 2023, suggests against a thick CO2 atmosphere, however this does not exclude a thick abiotic oxygen dominated atmosphere as is hypothesized to be Common around Red dwarf stars, with a measured surface temperature of 380 K (107 °C; 224 °F). [7] [6] In addition, the planet may be very geologically active due to tidal squeezing similar to Jupiter's moon Io, which happens to have a similar orbital period and eccentricity (see TRAPPIST-1#Resonance and tides for references).

    Orbit

    The orbit of TRAPPIST-1c is very close to its host star. One year on the planet lasts a mere 2.42 days (58 hours), a fraction as long as that of the Solar System's innermost planet, Mercury, at 176 days. The planet orbits at a distance of 0.0158 AU, which is about 1.6% the distance between Earth and the Sun. At this proximity, TRAPPIST-1c is most likely tidally locked. However, due to the small size of its host star, the planet only receives about 2.1 times the sunlight as Earth (similar to Venus, at 1.9 times). Its orbital eccentricity is very low at 0.00654, similar to that of TRAPPIST-1b.

    Host star

    TRAPPIST-1c orbits the ultracool red-dwarf star TRAPPIST-1. It is 0.121 R☉ and 0.089 M☉, with a temperature of 2511 K and an age between 3 and 8 billion years. For comparison, the Sun has a temperature of 5778 K and is about 4.5 billion years old. TRAPPIST-1 is also very dim, with about 0.0005 times (0.05%) the luminosity of the Sun. It is too faint to be seen with the naked eye, having an apparent magnitude of 18.80.

    Atmosphere

    The combined transmission spectrum of TRAPPIST-1 b and c rules out a cloud-free hydrogen-dominated atmosphere for each planet, so they are unlikely to harbor an extended gas envelope. Prior to JWST observations, other atmospheres, from a cloud-free water-vapor atmosphere to a Venus-like atmosphere, remained consistent with the featureless spectrum. [9]

    In 2018, the composition of TRAPPIST-1c was determined, and has been found to be rock-based. The presence of an atmosphere could not be confirmed. [10] [3] An observation of the secondary eclipse of TRAPPIST-1c by the James Webb Space Telescope, announced in 2023 rules out a thick carbon dioxide atmosphere like that of Venus. [7] [6] This is similar to JWST results on the inner planet TRAPPIST-1b announced earlier the same year, which suggest that it does not have a thick CO2 dominated atmosphere. [11]

    See also

    Related Research Articles

    <span class="mw-page-title-main">Transit-timing variation</span> Exoplanet detection method using transit timing variations

    Transit-timing variation is a method for detecting exoplanets by observing variations in the timing of a transit. This provides an extremely sensitive method capable of detecting additional planets in the system with masses potentially as small as that of Earth. In tightly packed planetary systems, the gravitational pull of the planets among themselves causes one planet to accelerate and another planet to decelerate along its orbit. The acceleration causes the orbital period of each planet to change. Detecting this effect by measuring the change is known as transit-timing variations. "Timing variation" asks whether the transit occurs with strict periodicity or if there's a variation.

    <span class="mw-page-title-main">HD 219134 b</span> Super-Earth orbiting HD 219134

    HD 219134 b is one of at least five exoplanets orbiting HD 219134, a main-sequence star in the constellation of Cassiopeia. HD 219134 b has a size of about 1.6 R🜨, and a density of 6.4 g/cm3 and orbits at 21.25 light-years away. The exoplanet was initially detected by the instrument HARPS-N of the Italian Telescopio Nazionale Galileo via the radial velocity method and subsequently observed by the Spitzer telescope as transiting in front of its star. The exoplanet has a mass of about 4.5 times that of Earth and orbits its host star every three days. In 2017, it was found that the planet likely hosts an atmosphere.

    <span class="mw-page-title-main">TRAPPIST-1</span> Ultra-cool red dwarf star in the constellation Aquarius

    TRAPPIST-1 is a cool red dwarf star with seven known exoplanets. It lies in the constellation Aquarius about 40.66 light-years away from Earth, and has a surface temperature of about 2,566 kelvins. Its radius is slightly larger than Jupiter and it has a mass of about 9% of the Sun. It is estimated to be 7.6 billion years old, making it older than the Solar System. The discovery of the star was first published in 2000.

    <span class="mw-page-title-main">SPECULOOS</span> Astronomical observatory

    SPECULOOS (Search for habitable Planets EClipsing ULtra-cOOl Stars) is a project consisting of SPECULOOS Southern Observatory (SSO) at the Paranal Observatory in Chile and SPECULOOS Northern Observatory (SNO) at the Teide Observatory in Tenerife.

    <span class="mw-page-title-main">TRAPPIST-1d</span> Small Venus-like exoplanet orbiting TRAPPIST-1

    TRAPPIST-1d, also designated as 2MASS J23062928-0502285 d, is a small exoplanet, which orbits on the inner edge of the habitable zone of the ultracool dwarf star TRAPPIST-1, located 40.7 light-years away from Earth in the constellation of Aquarius. The exoplanet was found by using the transit method, in which the dimming effect that a planet causes as it crosses in front of its star is measured. The first signs of the planet were announced in 2016, but it wasn't until the following years that more information concerning the probable nature of the planet was obtained. TRAPPIST-1d is the second-least massive planet of the system and is likely to have a compact hydrogen-poor atmosphere similar to Venus, Earth, or Mars. It receives just 4.3% more sunlight than Earth, placing it on the inner edge of the habitable zone. It has about <5% of its mass as a volatile layer, which could consist of atmosphere, oceans, and/or ice layers. A 2018 study by the University of Washington concluded that TRAPPIST-1d might be a Venus-like exoplanet with an uninhabitable atmosphere. The planet is an eyeball planet candidate.

    <span class="mw-page-title-main">TRAPPIST-1b</span> Rocky exoplanet orbiting TRAPPIST-1

    TRAPPIST-1b, also designated as 2MASS J23062928-0502285 b, is a mainly rocky exoplanet orbiting around the ultra-cool dwarf star TRAPPIST-1, located 40.7 light-years away from Earth in the constellation of Aquarius. The planet was detected using the transit method, where a planet dims the host star's light as it passes in front of it. It was first announced on May 2, 2016, and later studies were able to refine its physical parameters.

    <span class="mw-page-title-main">Ultra-cool dwarf</span> Class-M stars with a temperature below 2,700 K

    An ultra-cool dwarf is a stellar or sub-stellar object that has an effective temperature lower than 2,700 K . This category of dwarf stars was introduced in 1997 by J. Davy Kirkpatrick, Todd J. Henry, and Michael J. Irwin. It originally included very low mass M-dwarf stars with spectral types of M7 but was later expanded to encompass stars ranging from the coldest known to brown dwarfs as cool as spectral type T6.5. Altogether, ultra-cool dwarfs represent about 15% of the astronomical objects in the stellar neighborhood of the Sun. One of the best known examples is TRAPPIST-1.

    <span class="mw-page-title-main">TRAPPIST-1f</span> Earth-size exoplanet orbiting TRAPPIST-1

    TRAPPIST-1f, also designated as 2MASS J23062928-0502285 f, is an exoplanet, likely rocky, orbiting within the habitable zone around the ultracool dwarf star TRAPPIST-1, located 40.7 light-years away from Earth in the constellation of Aquarius. The exoplanet was found by using the transit method, in which the dimming effect that a planet causes as it crosses in front of its star is measured.

    <span class="mw-page-title-main">TRAPPIST-1g</span> Earth-size exoplanet orbiting TRAPPIST-1

    TRAPPIST-1g, also designated as 2MASS J23062928-0502285 g and K2-112 g, is an exoplanet orbiting around the ultra-cool dwarf star TRAPPIST-1, located 40.7 light-years away from Earth in the constellation Aquarius. It was one of four new exoplanets to be discovered orbiting the star in 2017 using observations from the Spitzer Space Telescope. The exoplanet is within the optimistic habitable zone of its host star. It was found by using the transit method, in which the dimming effect that a planet causes as it crosses in front of its star is measured.

    <span class="mw-page-title-main">TRAPPIST-1e</span> Earth-size exoplanet orbiting TRAPPIST-1

    TRAPPIST-1e, also designated as 2MASS J23062928-0502285 e, is a rocky, close-to-Earth-sized exoplanet orbiting within the habitable zone around the ultracool dwarf star TRAPPIST-1, located 40.7 light-years away from Earth in the constellation of Aquarius. Astronomers used the transit method to find the exoplanet, a method that measures the dimming of a star when a planet crosses in front of it.

    <span class="mw-page-title-main">TRAPPIST-1h</span> Cold Earth-size exoplanet orbiting TRAPPIST-1

    TRAPPIST-1h, also designated as 2MASS J23062928-0502285 h, is an exoplanet orbiting around the ultra-cool dwarf star TRAPPIST-1, located 40.7 light-years away from Earth in the constellation Aquarius. It was one of four new exoplanets to be discovered orbiting the star in 2017 using observations from the Spitzer Space Telescope. In the following years, more studies were able to refine its physical parameters.

    <span class="mw-page-title-main">LHS 1140 b</span> Super-Earth orbiting LHS 1140

    LHS 1140 b is an exoplanet orbiting within the conservative habitable zone of the red dwarf LHS 1140. Discovered in 2017 by the MEarth Project, LHS 1140 b is about 5.6 times the mass of Earth and about 70% larger in radius, putting it within the super-Earth category of planets. It was initially thought to be a dense rocky planet, but refined measurements of its mass and radius have found a lower density, indicating that it is likely an ocean world with 9-19% of its mass composed of water, or a dense mini-Neptune. LHS 1140 b orbits entirely within the star's habitable zone and gets 43% the incident flux of Earth. The planet is 49 light-years away and transits its star, making it an excellent candidate for atmospheric studies with ground-based and/or space telescopes.

    <span class="mw-page-title-main">Ross 128 b</span> Confirmed terrestrial exoplanet orbiting Ross 128

    Ross 128 b is a confirmed Earth-sized exoplanet, likely rocky, that is orbiting within the inner habitable zone of the red dwarf star Ross 128, at a distance of around 11 light-years from Earth. The exoplanet was found using a decade's worth of radial velocity data using the European Southern Observatory's HARPS spectrograph at the La Silla Observatory in Chile. Ross 128 b is the nearest exoplanet around a quiet red dwarf, and is considered one of the best candidates for habitability. The planet is only 35% more massive than Earth, receives only 38% more starlight, and is expected to be a temperature suitable for liquid water to exist on the surface, if it has an atmosphere.

    K2-315b is an exoplanet located 185.3 light years away from Earth in the southern zodiac constellation Libra. It orbits the red dwarf K2-315.

    WASP-72 is the primary of a binary star system. It is an F7 class dwarf star, with an internal structure just on the verge of the Kraft break. It is orbited by a planet WASP-72b. The age of WASP-72 is younger than the Sun at 3.55±0.82 billion years.

    WASP-88 is a F-type main-sequence star. Its surface temperature is 6450±61 K. WASP-88 is similar to the Sun in its concentration of heavy elements, with a metallicity Fe/H index of 0.03±0.04, and is younger at an age of 3.0±1.3 billion years.

    WASP-80 is a K-type main-sequence star about 162 light-years away. The star's age is much younger than the Sun's at 1.352±0.222 billion years. WASP-80 is similar to the Sun in concentration of heavy elements, although this measurement is highly uncertain.

    <span class="mw-page-title-main">WASP-96b</span> Gas giant exoplanet targeted for spectroscopy

    WASP-96b is a gas giant exoplanet. Its mass is 0.48 Jupiters. It is 0.0453 AU from the class G star WASP-96, which it orbits every 3.4 days. It is about 1,120 light-years away from Earth, in the constellation Phoenix. It was discovered in 2013 by the Wide Angle Search for Planets (WASP).

    LP 890-9, also known as SPECULOOS-2 or TOI-4306, is a high proper motion red dwarf star located 105 light-years (32 pc) away from the Solar System in the constellation of Eridanus. The star has 12% the mass and 15% the radius of the Sun, and a temperature of 2,871 K. As of 2022, it is the second-coolest star found to host a planetary system, after TRAPPIST-1.

    References

    1. Gillon, Michaël; Jehin, Emmanuël; Lederer, Susan M.; Delrez, Laetitia; et al. (May 2016). "Temperate Earth-sized planets transiting a nearby ultracool dwarf star". Nature. 533 (7602): 221–224. arXiv: 1605.07211 . Bibcode:2016Natur.533..221G. doi:10.1038/nature17448. ISSN   1476-4687. PMC   5321506 . PMID   27135924.
    2. 1 2 3 4 5 Agol, Eric; Dorn, Caroline; Grimm, Simon L.; Turbet, Martin; et al. (1 February 2021). "Refining the Transit-timing and Photometric Analysis of TRAPPIST-1: Masses, Radii, Densities, Dynamics, and Ephemerides". The Planetary Science Journal. 2 (1): 1. arXiv: 2010.01074 . Bibcode:2021PSJ.....2....1A. doi: 10.3847/psj/abd022 . S2CID   222125312.
    3. 1 2 3 4 5 Grimm, Simon L.; Demory, Brice-Olivier; Gillon, Michael; Dorn, Caroline; Agol, Eric; Burdanov, Artem; Delrez, Laetitia; Sestovic, Marko; Triaud, Amaury H.M.J.; Turbet, Martin; Bolmont, Emeline; Caldas, Anthony; de Wit, Julien; Jehin, Emmanuel; Leconte, Jeremy; Raymond, Sean N.; Van Grootel, Valerie; Burgasser, Adam J.; Carey, Sean; Fabrycky, Daniel; Heng, Kevin; Hernandez, David M.; Ingalls, James G.; Lederer, Susan; Selsis, Franck; Queloz, Didier (2018). "The nature of the TRAPPIST-1 exoplanets". Astronomy & Astrophysics. 613: A68. arXiv: 1802.01377 . Bibcode:2018A&A...613A..68G. doi:10.1051/0004-6361/201732233. S2CID   3441829.
    4. Van Grootel, Valerie; Fernandes, Catarina S.; Gillon, Michaël; Jehin, Emmanuel; Scuflaire, Richard; et al. (2018). "Stellar parameters for TRAPPIST-1". The Astrophysical Journal. 853 (1): 30. arXiv: 1712.01911 . Bibcode:2018ApJ...853...30V. doi: 10.3847/1538-4357/aaa023 . S2CID   54034373.
    5. Ducrot, E.; Gillon, M.; Delrez, L.; Agol, E.; et al. (1 August 2020). "TRAPPIST-1: Global results of the Spitzer Exploration Science Program Red Worlds". Astronomy & Astrophysics. 640: A112. arXiv: 2006.13826 . Bibcode:2020A&A...640A.112D. doi:10.1051/0004-6361/201937392. ISSN   0004-6361. S2CID   220041987.
    6. 1 2 3 4 Zieba, Sebastian; Kreidberg, Laura; Ducrot, Elsa; Gillon, Michaël; et al. (June 2023). "No thick carbon dioxide atmosphere on the rocky exoplanet TRAPPIST-1 c". Nature . 620 (7975): 746–749. arXiv: 2306.10150 . Bibcode:2023Natur.620..746Z. doi:10.1038/s41586-023-06232-z. S2CID   259200424.
    7. 1 2 3 "Webb Rules Out Thick Carbon Dioxide Atmosphere for Rocky Exoplanet". webbtelescope.org. STScI. 19 June 2023. Retrieved 19 June 2023.
    8. 1 2 Delrez, Laetitia; Gillon, Michael; H.M.J, Amaury; Brice-Oliver Demory, Triaud; de Wit, Julien; Ingalls, James; Agol, Eric; Bolmont, Emeline; Burdanov, Artem; Burgasser, Adam J.; Carey, Sean J.; Jehin, Emmanuel; Leconte, Jeremy; Lederer, Susan; Queloz, Didier; Selsis, Franck; Grootel, Valerie Van (2018). "Early 2017 observations of TRAPPIST-1 with Spitzer". Monthly Notices of the Royal Astronomical Society. 475 (3): 3577–3597. arXiv: 1801.02554 . Bibcode:2018MNRAS.475.3577D. doi:10.1093/mnras/sty051.
    9. de Wit, Julien; et al. (2016). "A combined transmission spectrum of the Earth-sized exoplanets TRAPPIST-1 b and c". Nature. 537 (7618): 69–72. arXiv: 1606.01103 . Bibcode:2016Natur.537...69D. doi:10.1038/nature18641. PMID   27437572. S2CID   205249853.
    10. Landau, NASA, Liz. "New clues to compositions of TRAPPIST-1 planets". Exoplanet Exploration: Planets Beyond our Solar System. Retrieved 21 May 2021.{{cite web}}: CS1 maint: multiple names: authors list (link)
    11. "NASA's Webb Measures the Temperature of a Rocky Exoplanet". webbtelescope.org. STScI. 27 March 2023. Retrieved 27 March 2023.