Kepler-1229b

Last updated
Kepler-1229b
Kepler-1229b.jpg
An artistic simulation of the potentially habitable exoplanet Kepler-1229b, with its star (center). The Milky Way can be seen in the background.
Discovery
Discovered by Kepler spacecraft
Discovery dateMay 12, 2016
transit
Orbital characteristics
0.2896 AU (43,320,000 km) [nb 1]
Eccentricity ~0
86.829 [1] d
Inclination ~89.5
Star Kepler-1229 (KOI-2418)
Physical characteristics
Mean radius
1.40+0.11
−0.13
[2] [nb 2] R🜨
Mass ~2.7 [3] ME
Temperature 213 K (−60 °C; −76 °F)

    Kepler-1229b [1] (also known by its Kepler Object of Interest designation KOI-2418.01) is a confirmed super-Earth exoplanet, likely rocky, orbiting within the habitable zone of the red dwarf Kepler-1229, located about 870 light years (267 parsecs) from Earth in the constellation of Cygnus. [4] [2] It was discovered in 2016 by the Kepler space telescope. [5] The exoplanet was found by using the transit method, in which the dimming effect that a planet causes as it crosses in front of its star is measured.

    Contents

    Physical characteristics

    Mass, radius and temperature

    Kepler-1229b is likely a rocky super-Earth, an exoplanet with a radius and mass bigger than Earth, but smaller than that of the gas giants Neptune and Uranus. It is 2.7 times the mass of earth. It has an equilibrium temperature of 213 K (−60 °C; −76 °F). [3]

    Host star

    The planet orbits a (M-type) star named Kepler-1229, orbited by a total of one planet. The star has a mass of 0.54 M and a radius of 0.51 R. It has a temperature of 3724 K and is about 3.72 billion years old. [2] In comparison, the Sun is 4.6 billion years old [6] and has a temperature of 5778 K. [7]

    The star's apparent magnitude, or how bright it appears from Earth's perspective, is 15.474. Therefore, it is too dim to be seen with the naked eye.

    Orbit

    Kepler-1229b orbits its host star with about 4% of the Sun's luminosity every 86.829 days at a distance of 0.2896  AU (close to that of Mercury, which orbits at a distance of 0.387 AU).

    Habitability

    The exoplanet, along with eight others, was announced to be orbiting in the habitable zone of its parent star, the region where, with the correct conditions and atmospheric properties, liquid water may exist on the surface of the planet. [5] Kepler-1229b has a radius of 1.4 R🜨, so it is likely rocky. Its host star is a red dwarf, with about half as much mass than the Sun does. As a result, stars like Kepler-1229 have the ability to live up to 50–60 billion years, 5–6 times longer than the Sun will live. [8]

    The planet is likely tidally locked,[ citation needed ] with one side of its hemisphere permanently facing towards the star, while the opposite side shrouded in eternal darkness. However, between these two intense areas, there would be a sliver of habitability – called the terminator line, where the temperatures may be suitable (about 273 K (0 °C; 32 °F)) for liquid water to exist. Additionally, a much larger portion of the planet may be habitable if it supports a thick enough atmosphere to transfer heat to the side facing away from the star.

    Discovery and follow-up studies

    In 2013, before the two wheels failed, NASA's Kepler spacecraft was completing observing stars on its photometer, the instrument it uses to detect transit events, in which a planet crosses in front of and dims its host star for a brief and near-regular period of time. In this last test, Kepler observed 50000 stars in the Kepler Input Catalog, including Kepler-1229; the preliminary light curves were sent to the Kepler science team for analysis, who chose obvious planetary companions from the bunch for follow-up at observatories. The radial velocity observations confirmed that a planetary body was responsible for the dips observed in Kepler-1229's light curve, thus confirming it as a planet. The planet was then announced in the newest catalog released by NASA on May 12, 2016, about 3 years later. [9]

    At nearly 770 light-years (236 pc) distant, Kepler-1229b is too remote and its star too far for current telescopes or the next generation of planned telescopes to determine its mass or whether it has an atmosphere. The Kepler spacecraft focused on a single small region of the sky but next-generation planet-hunting space telescopes, such as TESS and CHEOPS, will examine nearby stars throughout the sky. Nearby stars with planets can then be studied by the upcoming James Webb Space Telescope and future large ground-based telescopes to analyze atmospheres, determine masses and infer compositions. Additionally the Square Kilometer Array would significantly improve radio observations over the Arecibo Observatory and Green Bank Telescope. [10]

    See also

    Notes

    1. Kepler's Third Law, assuming a circular orbit: Mass and the period are known, so the equation can be written with semimajor axis as the subject: .
    2. The 1.40 Earth radius was taken from a data set of confirmed Kepler planets, updated by NASA in 10 May 2016. The Morton et al. 2016 (version 1) paper actually used an older data set for Kepler candidate planets that, at the time, was only updated back in 18 September 2015 but that data set gave a different value of 1.12 Earth radius for the planet, along with different mass, radius and temperature for the star.

    Related Research Articles

    <span class="mw-page-title-main">Kepler-22b</span> Super-Earth exoplanet orbiting Kepler-22

    Kepler-22b is an exoplanet orbiting within the habitable zone of the Sun-like star Kepler-22. It is located about 640 light-years from Earth in the constellation of Cygnus. It was discovered by NASA's Kepler Space Telescope in December 2011 and was the first known transiting planet to orbit within the habitable zone of a Sun-like star, where liquid water could exist on the planet's surface. Kepler-22 is too dim to be seen with the naked eye.

    <span class="mw-page-title-main">Gliese 667 Cc</span> Goldilocks super-Earth orbiting Gliese 667 C

    Gliese 667 Cc is an exoplanet orbiting within the habitable zone of the red dwarf star Gliese 667 C, which is a member of the Gliese 667 triple star system, approximately 23.62 light-years away in the constellation of Scorpius. The exoplanet was found by using the radial velocity method, from radial-velocity measurements via observation of Doppler shifts in the spectrum of the planet's parent star.

    <span class="mw-page-title-main">Kepler-47c</span> Kepler-47c is a gas giant.

    Kepler-47c is an exoplanet orbiting the binary star system Kepler-47, the outermost of three such planets discovered by NASA's Kepler spacecraft. The system, also involving two other exoplanets, is located about 3,400 light-years away.

    <span class="mw-page-title-main">Kepler-69c</span> Super-Earth orbiting Kepler-69

    Kepler-69c is a confirmed super-Earth extrasolar planet, likely rocky, orbiting the Sun-like star Kepler-69, the outermore of two such planets discovered by NASA's Kepler spacecraft. It is located about 2,430 light-years from Earth.

    <span class="mw-page-title-main">Kepler-62e</span> Habitable-zone super-Earth planet orbiting Kepler-62

    Kepler-62e is a super-Earth exoplanet discovered orbiting within the habitable zone of Kepler-62, the second outermost of five such planets discovered by NASA's Kepler spacecraft. Kepler-62e is located about 990 light-years from Earth in the constellation of Lyra. The exoplanet was found using the transit method, in which the dimming effect that a planet causes as it crosses in front of its star is measured. Kepler-62e may be a terrestrial or ocean-covered planet; it lies in the inner part of its host star's habitable zone.

    <span class="mw-page-title-main">Kepler-62f</span> Super-Earth orbiting Kepler-62

    Kepler-62f is a super-Earth exoplanet orbiting within the habitable zone of the star Kepler-62, the outermost of five such planets discovered around the star by NASA's Kepler spacecraft. It is located about 980 light-years from Earth in the constellation of Lyra.

    <span class="mw-page-title-main">Kepler-69</span> Star in the constellation Cygnus

    Kepler-69 is a G-type main-sequence star similar to the Sun in the constellation Cygnus, located about 2,430 ly (750 pc) from Earth. On April 18, 2013 it was announced that the star has two planets. Although initial estimates indicated that the terrestrial planet Kepler-69c might be within the star's habitable zone, further analysis showed that the planet very likely is interior to the habitable zone and is far more analogous to Venus than to Earth and thus completely inhospitable.

    Kepler-62c is an approximately Mars-sized exoplanet discovered in orbit around the star Kepler-62, the second innermost of five discovered by NASA's Kepler spacecraft around Kepler-62. At the time of discovery it was the second-smallest exoplanet discovered and confirmed by the Kepler spacecraft, after Kepler-37b. It was found using the transit method, in which the dimming that a planet causes as it crosses in front of its star is measured. Its stellar flux is 25 ± 3 times Earth's. It is similar to Mercury.

    Kepler-62d is the third innermost and the largest exoplanet discovered orbiting the star Kepler-62, with a size roughly twice the diameter of Earth. It was found using the transit method, in which the dimming that a planet causes as it crosses in front of its star is measured. Its stellar flux is 15 ± 2 times Earth's. Due to its closer orbit to its star, it is a super-Venus or, if it has a volatile composition, a hot Neptune, with an estimated equilibrium temperature of 510 K, too hot to sustain life on its surface.

    Kepler-61b is a super-Earth exoplanet orbiting within parts of the habitable zone of the K-type main-sequence star Kepler-61. It is located about 1,100 light-years from Earth in the constellation of Cygnus. It was discovered in 2013 using the transit method, in which the dimming effect that a planet causes as it crosses in front of its star is measured, by NASA's Kepler spacecraft.

    Kepler-61 is a K-type main-sequence star approximately 1,100 light years from Earth in the constellation Cygnus. It is located within the field of vision of the Kepler spacecraft, the satellite that NASA's Kepler Mission used to detect planets that may be transiting their stars. On April 24, 2013 it was announced that the star has an extrasolar planet orbiting in the inner edge of the habitable zone, named Kepler-61b.

    <span class="mw-page-title-main">Kepler-186f</span> Terrestrial exoplanet orbiting Kepler-186

    Kepler-186f is an Earth-sized exoplanet orbiting within the habitable zone of the red dwarf star Kepler-186, the outermost of five such planets discovered around the star by NASA's Kepler spacecraft. It is located about 580 light-years from Earth in the constellation of Cygnus.

    <span class="mw-page-title-main">Kepler-438b</span> Super-Earth orbiting Kepler-438

    Kepler-438b is a confirmed near-Earth-sized exoplanet. It is likely rocky. It orbits on the inner edge of the habitable zone of a red dwarf, Kepler-438, about 472.9 light-years from Earth in the constellation Lyra. It receives 1.4 times our solar flux. The planet was discovered by NASA's Kepler spacecraft using the transit method, in which the dimming effect that a planet causes as it crosses in front of its star is measured. NASA announced the confirmation of the exoplanet on 6 January 2015.

    <span class="mw-page-title-main">Kepler-442b</span> Super-Earth orbiting Kepler-442

    Kepler-442b is a confirmed near-Earth-sized exoplanet, likely rocky, orbiting within the habitable zone of the K-type main-sequence star Kepler-442, about 1,206 light-years (370 pc) from Earth in the constellation of Lyra.

    <span class="mw-page-title-main">Kepler-452b</span> Super-Earth exoplanet orbiting Kepler-452

    Kepler-452b is a super-Earth exoplanet orbiting within the inner edge of the habitable zone of the sun-like star Kepler-452 and is the only planet in the system discovered by Kepler. It is located about 1,800 light-years (550 pc) from Earth in the constellation of Cygnus.

    Kepler-419c is a super-Jupiter exoplanet orbiting within the habitable zone of the star Kepler-419, the outermost of two such planets discovered by NASA's Kepler spacecraft. It is located about 3,400 light-years from Earth in the constellation Cygnus. The exoplanet was found by using the transit timing variation method, in which the variations of transit data from an exoplanet are studied to reveal a more distant companion.

    Kepler-1229 is a red dwarf star located about 870 light-years (270 pc) away from the Earth in the constellation of Cygnus. It is known to host a super-Earth exoplanet within its habitable zone, Kepler-1229b, which was discovered in 2016.

    <span class="mw-page-title-main">K2-72e</span> Goldilocks terrestrial exoplanet orbiting K2-72

    K2-72e (also known by its EPIC designation EPIC 206209135.04), is a confirmed exoplanet, likely rocky, orbiting within the habitable zone of the red dwarf star K2-72, the outermost of four such planets discovered in the system by NASA's Kepler spacecraft on its "Second Light" mission. It is located about 217.1 light-years (66.56 parsecs, or nearly 2.0538×1015 km) away from Earth in the constellation of Aquarius. The exoplanet was found by using the transit method, in which the dimming effect that a planet causes as it crosses in front of its star is measured.

    <span class="mw-page-title-main">K2-288Bb</span> Mini-Neptune orbiting K2-288B

    K2-288Bb is a super-Earth or mini-Neptune exoplanet orbiting in the habitable zone of K2-288B, a low-mass M-dwarf star in a binary star system in the constellation of Taurus about 226 light-years from Earth. It was discovered by citizen scientists while analysing data from the Kepler spacecraft's K2 mission, and was announced on 7 January 2019. K2-288 is the third transiting planet system identified by the Exoplanet Explorers program, after the six planets of K2-138 and the three planets of K2-233.

    <span class="mw-page-title-main">Kepler-1649c</span> Earth-size exoplanet orbiting Kepler-1649

    Kepler-1649c is an Earth-sized exoplanet, likely rocky, orbiting within the habitable zone of the red dwarf star Kepler-1649, the outermost planet of the planetary system discovered by Kepler’s space telescope. It is located about 301 light-years (92 pc) away from Earth, in the constellation of Cygnus.

    References

    1. 1 2 Morton, Timothy D.; Bryson, Stephen T.; Coughlin, Jeffrey L.; Rowe, Jason F.; Ravichandran, Ganesh; Petigura, Erik A.; Haas, Michael R.; Batalha, Natalie M (10 May 2016). "False positive probabilities for all Kepler Objects of Interest: 1284 newly validated planets and 428 likely false positives". The Astrophysical Journal. 822 (2): 86. arXiv: 1605.02825 . Bibcode:2016ApJ...822...86M. doi: 10.3847/0004-637X/822/2/86 . S2CID   20832201.
    2. 1 2 3 "Kepler-1229 b". NASA Exoplanet Science Institute. 10 May 2016. Retrieved 2016-05-11.
    3. 1 2 "The Habitable Exoplanets Catalog - Planetary Habitability Laboratory @ UPR Arecibo" . Retrieved 27 June 2016.
    4. Prostak, Sergio (11 May 2016). "Astronomers Confirm 1,284 New Kepler Exoplanets". NASA. Sci News. Retrieved 2016-05-11.
    5. 1 2 1st Alien Earth Still Elusive Despite Huge Exoplanet Haul, Mike Wall, Space.com
    6. Fraser Cain (16 September 2008). "How Old is the Sun?". Universe Today . Retrieved 19 February 2011.
    7. Fraser Cain (15 September 2008). "Temperature of the Sun". Universe Today. Retrieved 19 February 2011.
    8. Adams, Fred C.; Laughlin, Gregory; Graves, Genevieve J. M. "Red Dwarfs and the End of the Main Sequence". Gravitational Collapse: From Massive Stars to Planets. Revista Mexicana de Astronomía y Astrofísica. pp. 46–49. Bibcode:2004RMxAC..22...46A.
    9. Northon, Karen (10 May 2016). "Kepler Mission Announces Largest Planet Collection Ever Discovered" . Retrieved 27 June 2016.
    10. Siemion, Andrew P.V.; Demorest, Paul; Korpela, Eric; Maddalena, Ron J.; Werthimer, Dan; Cobb, Jeff; Langston, Glen; Lebofsky, Matt; Marcy, Geoffrey W.; Tarter, Jill (3 February 2013). "A 1.1 to 1.9 GHz SETI Survey of the Kepler Field: I. A Search for Narrow-band Emission from Select Targets". Astrophysical Journal. 767 (1): 94. arXiv: 1302.0845 . Bibcode:2013ApJ...767...94S. doi:10.1088/0004-637X/767/1/94. S2CID   119302350.