TRAPPIST-1h

Last updated

TRAPPIST-1h
TRAPPIST-1h artist impression 2018.png
Artist's impression of TRAPPIST-1h.
Discovery [1]
Discovered by Michaël Gillon et al.
Discovery site Spitzer Space Telescope
Discovery date22 February 2017
Transit
Orbital characteristics [2]
0.06189±0.00053  AU
Eccentricity 0.00567±0.00121 [3]
18.772866±0.000214  d
Inclination 89.805°±0.013°
338.92°±9.66° [3]
Star TRAPPIST-1 [4]
Physical characteristics [2]
Mean radius
0.755±0.014  R🜨
Mass 0.326±0.020  M🜨
Mean density
4.147+0.322
−0.302
  g/cm3
0.570±0.038 g
5.58±0.37  m/s2
Temperature Teq: 171.7±1.7  K (−101.5 °C; −150.6 °F) [5]

    TRAPPIST-1h, also designated as 2MASS J23062928-0502285 h, is an exoplanet orbiting around the ultra-cool dwarf star TRAPPIST-1, located 40.7 light-years (12.5 parsecs ) away from Earth in the constellation Aquarius. It was one of four new exoplanets to be discovered orbiting the star in 2017 using observations from the Spitzer Space Telescope. [6] [7] In the following years, more studies were able to refine its physical parameters.

    Contents

    The outermost known planet in its system, it is roughly one third the mass of Earth, and about 76% as large. Its relatively low density indicates that it is likely water-rich, like several other planets in the system. [8]

    Physical characteristics

    Mass, radius, and temperature

    TRAPPIST-1h has a radius of 0.755  R🜨 , a mass of 0.326  M🜨 , and about 57% Earth's surface gravity. [2] It was initially estimated to have a density of 3.97 g/cm3, similar to that of Mars. Given this density, about ≤5% of its mass may be water, likely in the form of a thick ice shell, [8] [9] since it only receives about 13% of the stellar flux that Earth does. It has an equilibrium temperature of 169 K (−104 °C; −155 °F), similar to that of Earth's south pole.

    Host star

    TRAPPIST-1h orbits the ultracool dwarf star TRAPPIST-1. It is 0.121 R and 0.089 M, with a temperature of 2511 K and an age between 3 and 8 billion years. For comparison, the Sun has a temperature of 5778 K and is about 4.5 billion years old. TRAPPIST-1 is also very dim, with about 0.0005 times the luminosity of the Sun. The star's apparent magnitude, or how bright it appears from Earth's perspective, is 18.8. Therefore, it is too dim to be seen with the naked eye.

    Orbit

    Despite it being the most distant known planet in its system, TRAPPIST-1h orbits its host star with an orbital period of 18.868 days and an orbital radius of about 0.0619 AU. This is even smaller than Mercury's orbit around the Sun (which is about 0.38 AU). [10]

    Stable liquid water

    Although TRAPPIST-1h's orbit falls near its star's frost line, it could harbor liquid water [11] [12] under an H2-rich atmosphere, either primordial or resulting from continuous outgassing combined with internal heating, [10] although existence of such atmosphere was strongly disfavored by observations in 2021 [13] and 2022. [14] If ice-covered, it could also potentially harbor a subsurface ocean by way of tidal heating, which could lead to cryovolcanism in the form of erupting geysers. [8] [9]

    See also

    Related Research Articles

    <span class="mw-page-title-main">Wide Angle Search for Planets</span> Exoplanet search project

    WASP or Wide Angle Search for Planets is an international consortium of several academic organisations performing an ultra-wide angle search for exoplanets using transit photometry. The array of robotic telescopes aims to survey the entire sky, simultaneously monitoring many thousands of stars at an apparent visual magnitude from about 7 to 13.

    <span class="mw-page-title-main">Transit-timing variation</span> Exoplanet detection method using transit timing variations

    Transit-timing variation is a method for detecting exoplanets by observing variations in the timing of a transit. This provides an extremely sensitive method capable of detecting additional planets in the system with masses potentially as small as that of Earth. In tightly packed planetary systems, the gravitational pull of the planets among themselves causes one planet to accelerate and another planet to decelerate along its orbit. The acceleration causes the orbital period of each planet to change. Detecting this effect by measuring the change is known as transit-timing variations. "Timing variation" asks whether the transit occurs with strict periodicity or if there's a variation.

    <span class="mw-page-title-main">TRAPPIST-1</span> Ultra-cool red dwarf star in the constellation Aquarius

    TRAPPIST-1 is a cool red dwarf star with seven known exoplanets. It lies in the constellation Aquarius about 40.66 light-years away from Earth, and has a surface temperature of about 2,566 K. Its radius is slightly larger than Jupiter and it has a mass of about 9% of the Sun. It is estimated to be 7.6 billion years old, making it older than the Solar System. The discovery of the star was first published in 2000.

    <span class="mw-page-title-main">SPECULOOS</span> Astronomical observatory

    SPECULOOS (Search for habitable Planets EClipsing ULtra-cOOl Stars) is a project consisting of SPECULOOS Southern Observatory (SSO) at the Paranal Observatory in Chile and SPECULOOS Northern Observatory (SNO) at the Teide Observatory in Tenerife.

    <span class="mw-page-title-main">TRAPPIST-1d</span> Small Venus-like exoplanet orbiting TRAPPIST-1

    TRAPPIST-1d, also designated as 2MASS J23062928-0502285 d, is a small exoplanet, which orbits on the inner edge of the habitable zone of the ultracool dwarf star TRAPPIST-1, located 40.7 light-years away from Earth in the constellation of Aquarius. The exoplanet was found by using the transit method, in which the dimming effect that a planet causes as it crosses in front of its star is measured. The first signs of the planet were announced in 2016, but it wasn't until the following years that more information concerning the probable nature of the planet was obtained. TRAPPIST-1d is the second-least massive planet of the system and is likely to have a compact hydrogen-poor atmosphere similar to Venus, Earth, or Mars. It receives just 4.3% more sunlight than Earth, placing it on the inner edge of the habitable zone. It has about <5% of its mass as a volatile layer, which could consist of atmosphere, oceans, and/or ice layers. A 2018 study by the University of Washington concluded that TRAPPIST-1d might be a Venus-like exoplanet with an uninhabitable atmosphere. The planet is an eyeball planet candidate.

    <span class="mw-page-title-main">TRAPPIST-1b</span> Rocky exoplanet orbiting TRAPPIST-1

    TRAPPIST-1b, also designated as 2MASS J23062928-0502285 b, is a mainly rocky exoplanet orbiting around the ultra-cool dwarf star TRAPPIST-1, located 40.7 light-years away from Earth in the constellation of Aquarius. The planet was detected using the transit method, where a planet dims the host star's light as it passes in front of it. It was first announced on May 2, 2016, and later studies were able to refine its physical parameters.

    <span class="mw-page-title-main">TRAPPIST-1c</span> Rocky exoplanet orbiting TRAPPIST-1

    TRAPPIST-1c, also designated as 2MASS J23062928-0502285 c, is a mainly rocky exoplanet orbiting around the ultracool dwarf star TRAPPIST-1, located 40.7 light-years away from Earth in the constellation Aquarius. It is the third most massive and third largest planet of the system, with about 131% the mass and 110% the radius of Earth. Its density indicates a primarily rocky composition, and observations by the James Webb Space Telescope announced in 2023 suggests against a thick CO2 atmosphere, however this does not exclude a thick abiotic oxygen-dominated atmosphere as is hypothesized to be common around red dwarf stars.

    <span class="mw-page-title-main">TRAPPIST-1f</span> Earth-size exoplanet orbiting TRAPPIST-1

    TRAPPIST-1f, also designated as 2MASS J23062928-0502285 f, is an exoplanet, likely rocky, orbiting within the habitable zone around the ultracool dwarf star TRAPPIST-1, located 40.7 light-years away from Earth in the constellation of Aquarius. The exoplanet was found by using the transit method, in which the dimming effect that a planet causes as it crosses in front of its star is measured.

    <span class="mw-page-title-main">TRAPPIST-1g</span> Earth-size exoplanet orbiting TRAPPIST-1

    TRAPPIST-1g, also designated as 2MASS J23062928-0502285 g and K2-112 g, is an exoplanet orbiting around the ultra-cool dwarf star TRAPPIST-1, located 40.7 light-years away from Earth in the constellation Aquarius. It was one of four new exoplanets to be discovered orbiting the star in 2017 using observations from the Spitzer Space Telescope. The exoplanet is within the optimistic habitable zone of its host star. It was found by using the transit method, in which the dimming effect that a planet causes as it crosses in front of its star is measured.

    <span class="mw-page-title-main">TRAPPIST-1e</span> Earth-size exoplanet orbiting TRAPPIST-1

    TRAPPIST-1e, also designated as 2MASS J23062928-0502285 e, is a rocky, close-to-Earth-sized exoplanet orbiting within the habitable zone around the ultracool dwarf star TRAPPIST-1, located 40.7 light-years away from Earth in the constellation of Aquarius. Astronomers used the transit method to find the exoplanet, a method that measures the dimming of a star when a planet crosses in front of it.

    K2-315b is an exoplanet located 185.3 light years away from Earth in the southern zodiac constellation Libra. It orbits the red dwarf K2-315.

    WASP-72 is the primary of a binary star system. It is an F7 class dwarf star, with an internal structure just on the verge of the Kraft break. It is orbited by a planet WASP-72b. The age of WASP-72 is younger than the Sun at 3.55±0.82 billion years.

    WASP-88 is a F-type main-sequence star. Its surface temperature is 6450±61 K. WASP-88 is similar to the Sun in its concentration of heavy elements, with a metallicity Fe/H index of 0.03±0.04, and is younger at an age of 3.0±1.3 billion years.

    WASP-80 is a K-type main-sequence star about 162 light-years away from Earth. The star's age is much younger than the Sun's at 1.352±0.222 billion years. WASP-80 could be similar to the Sun in concentration of heavy elements, although this measurement is highly uncertain.

    WASP-103b is a gaseous exoplanet, more specifically a hot Jupiter, located in the Hercules constellation orbiting the star WASP-103. It has an oval shape, similar to that of a rugby ball, thanks to the force of gravity exerted by its star. It is the first exoplanet to have a deformation detected.

    References

    1. Gillon, M.; Triaud, A. H. M. J.; Demory, B.-O.; Jehin, E.; Agol, E.; Deck, K. M.; Lederer, S. M.; De Wit, J.; Burdanov, A.; Ingalls, J. G.; Bolmont, E.; Leconte, J.; Raymond, S. N.; Selsis, F.; Turbet, M.; Barkaoui, K.; Burgasser, A.; Burleigh, M. R.; Carey, S. J.; Chaushev, A.; Copperwheat, C. M.; Delrez, L.; Fernandes, C. S.; Holdsworth, D. L.; Kotze, E. J.; Van Grootel, V.; Almleaky, Y.; Benkhaldoun, Z.; Magain, P.; Queloz, D. (2017). "Seven temperate terrestrial planets around the nearby ultracool dwarf star TRAPPIST-1" (PDF). Nature. 542 (7642): 456–460. arXiv: 1703.01424 . Bibcode:2017Natur.542..456G. doi:10.1038/nature21360. PMC   5330437 . PMID   28230125.
    2. 1 2 3 Agol, Eric; Dorn, Caroline; Grimm, Simon L.; Turbet, Martin; et al. (1 February 2021). "Refining the Transit-timing and Photometric Analysis of TRAPPIST-1: Masses, Radii, Densities, Dynamics, and Ephemerides". The Planetary Science Journal. 2 (1): 1. arXiv: 2010.01074 . Bibcode:2021PSJ.....2....1A. doi: 10.3847/psj/abd022 . S2CID   222125312.
    3. 1 2 Grimm, Simon L.; Demory, Brice-Olivier; Gillon, Michael; Dorn, Caroline; Agol, Eric; Burdanov, Artem; Delrez, Laetitia; Sestovic, Marko; Triaud, Amaury H.M.J.; Turbet, Martin; Bolmont, Emeline; Caldas, Anthony; de Wit, Julien; Jehin, Emmanuel; Leconte, Jeremy; Raymond, Sean N.; Van Grootel, Valerie; Burgasser, Adam J.; Carey, Sean; Fabrycky, Daniel; Heng, Kevin; Hernandez, David M.; Ingalls, James G.; Lederer, Susan; Selsis, Franck; Queloz, Didier (2018). "The nature of the TRAPPIST-1 exoplanets". Astronomy & Astrophysics. 613: A68. arXiv: 1802.01377 . Bibcode:2018A&A...613A..68G. doi:10.1051/0004-6361/201732233. S2CID   3441829.
    4. Van Grootel, Valerie; Fernandes, Catarina S.; Gillon, Michaël; Jehin, Emmanuel; Scuflaire, Richard; et al. (2018). "Stellar parameters for TRAPPIST-1". The Astrophysical Journal. 853 (1): 30. arXiv: 1712.01911 . Bibcode:2018ApJ...853...30V. doi: 10.3847/1538-4357/aaa023 . S2CID   54034373.
    5. Ducrot, E.; Gillon, M.; Delrez, L.; Agol, E.; et al. (1 August 2020). "TRAPPIST-1: Global results of the Spitzer Exploration Science Program Red Worlds". Astronomy & Astrophysics. 640: A112. arXiv: 2006.13826 . Bibcode:2020A&A...640A.112D. doi:10.1051/0004-6361/201937392. ISSN   0004-6361. S2CID   220041987.
    6. "Temperate Earth-Sized Planets Found in Extraordinarily Rich Planetary System TRAPPIST-1". SpaceRef. 22 February 2017. Retrieved 11 February 2017.
    7. "NASA telescope reveals largest batch of Earth-size, habitable-zone planets around single star". Exoplanet Exploration: Planets Beyond our Solar System (Press release). Retrieved 22 February 2017.
    8. 1 2 3 Quick, Lynnae C.; Roberge, Aki; Barr Mlinar, Amy; Hedman, Matthew M. (18 June 2020). "Forecasting Rates of Volcanic Activity on Terrestrial Exoplanets and Implications for Cryovolcanic Activity on Extrasolar Ocean Worlds". Publications of the Astronomical Society of the Pacific. 132 (1014): 084402. Bibcode:2020PASP..132h4402Q. doi: 10.1088/1538-3873/ab9504 . S2CID   219964895.
    9. 1 2 Quick, Lynnae C.; Roberge, Aki; Tovar Mendoza, Guadalupe; Quintana, Elisa V.; Youngblood, Allison A. (4 October 2023). "Prospects for Cryovolcanic Activity on Cold Ocean Planets". The Astrophysical Journal. 956 (29): 29. Bibcode:2023ApJ...956...29Q. doi: 10.3847/1538-4357/ace9b6 .
    10. 1 2 Luger, Rodrigo; Sestovic, Marko; Kruse, Ethan; Grimm, Simon L.; Demory, Brice-Olivier; et al. (2017). "A terrestrial-sized exoplanet at the snow line of TRAPPIST-1". Nature Astronomy. 1: 0129. arXiv: 1703.04166 . Bibcode:2017NatAs...1E.129L. doi:10.1038/s41550-017-0129. S2CID   54770728.
    11. Bourrier, Vincent; de Wit, Julien; Jäger, Mathias (31 August 2017). "Hubble delivers first hints of possible water content of TRAPPIST-1 planets". www.SpaceTelescope.org. Retrieved 4 September 2017.
    12. PTI (4 September 2017). "First evidence of water found on TRAPPIST-1 planets - The results suggest that the outer planets of the system might still harbour substantial amounts of water. This includes the three planets within the habitable zone of the star, lending further weight to the possibility that they may indeed be habitable". The Indian Express . Retrieved 4 September 2017.
    13. Gressier, A.; Mori, M.; Changeat, Q.; Edwards, B.; Beaulieu, J. P.; Marcq, E.; Charnay, B. (2022), "Near-infrared transmission spectrum of TRAPPIST-1 h usingHubbleWFC3 G141 observations", Astronomy & Astrophysics, 658: A133, arXiv: 2112.05510 , Bibcode:2022A&A...658A.133G, doi:10.1051/0004-6361/202142140, S2CID   245091619
    14. Garcia, L. J.; Moran, S. E.; Rackham, B. V.; Wakeford, H. R.; Gillon, M.; De Wit, J.; Lewis, N. K. (2022), "HST/WFC3 transmission spectroscopy of the cold rocky planet TRAPPIST-1h", Astronomy & Astrophysics, 665: A19, arXiv: 2203.13698 , Bibcode:2022A&A...665A..19G, doi:10.1051/0004-6361/202142603, S2CID   247748871