Giant Void

Last updated
Artist's conception of the Giant Void and the filaments and walls that surround it. The internal clusters can also be appreciated (credit: Pablo Carlos Budassi). Giant void.png
Artist's conception of the Giant Void and the filaments and walls that surround it. The internal clusters can also be appreciated (credit: Pablo Carlos Budassi).

The Giant Void (also known as the Giant Void in NGH, Canes Venatici Supervoid, and AR-Lp 36) is an extremely large region of space with an underdensity of galaxies and located in the constellation Canes Venatici. It is the second-largest-confirmed void to date, with an estimated diameter of 300 to 400 Mpc (1 to 1.3 billion light-years) [1] and its centre is approximately 1.5 billion light-years away (z = 0.116). [1] It was discovered in 1988, [2] and was the largest void in the Northern Galactic Hemisphere, [1] and possibly the second-largest ever detected. Even the hypothesized "Eridanus Supervoid" corresponding to the location of the WMAP cold spot is dwarfed by this void, although the Giant Void does not correspond to any significant cooling to the cosmic microwave background.

Inside this vast void there are 17 galaxy clusters, concentrated in a spherically shaped region 50 Mpc in diameter. [1] Studies of the motion of these clusters show that they have no interaction to each other, meaning the density of the clusters is very low resulting in weak gravitational interaction. [1] The void's location in the sky is close to the Boötes Void.

In a series of papers published between 2004 and 2006, cosmologist and theoretical physicist Laura Mersini-Houghton presented a theory that the universe arose from a multiverse, and made a series of testable predictions which included the existence of the Giant Void. [3] [4]

See also

Related Research Articles

<span class="mw-page-title-main">Canes Venatici</span> Constellation in the northern celestial hemisphere

Canes Venatici is one of the 88 constellations designated by the International Astronomical Union (IAU). It is a small northern constellation that was created by Johannes Hevelius in the 17th century. Its name is Latin for 'hunting dogs', and the constellation is often depicted in illustrations as representing the dogs of Boötes the Herdsman, a neighboring constellation.

<span class="mw-page-title-main">Virgo Supercluster</span> Galactic supercluster containing the Virgo Cluster

The Virgo Supercluster or the Local Supercluster is a mass concentration of galaxies containing the Virgo Cluster and Local Group, which itself contains the Milky Way and Andromeda galaxies, as well as others. At least 100 galaxy groups and clusters are located within its diameter of 33 megaparsecs. The Virgo SC is one of about 10 million superclusters in the observable universe and is in the Pisces–Cetus Supercluster Complex, a galaxy filament.

<span class="mw-page-title-main">Great Attractor</span> An apparent gravitational anomaly at the center of the local Laniakea Supercluster

The Great Attractor is a purported gravitational attraction in intergalactic space and the apparent central gravitational point of the Laniakea Supercluster. This supercluster contains the Milky Way, as well as about 100,000 other galaxies.

<span class="mw-page-title-main">Observable universe</span> All of space observable from the Earth at the present

The observable universe is a ball-shaped region of the universe comprising all matter that can be observed from Earth or its space-based telescopes and exploratory probes at the present time; the electromagnetic radiation from these objects has had time to reach the Solar System and Earth since the beginning of the cosmological expansion. Initially, it was estimated that there may be 2 trillion galaxies in the observable universe, although that number was reduced in 2021 to only several hundred billion based on data from New Horizons. Assuming the universe is isotropic, the distance to the edge of the observable universe is roughly the same in every direction. That is, the observable universe is a spherical region centered on the observer. Every location in the universe has its own observable universe, which may or may not overlap with the one centered on Earth.

<span class="mw-page-title-main">Whirlpool Galaxy</span> Interacting grand-design spiral galaxy

The Whirlpool Galaxy, also known as Messier 51a (M51a) or NGC 5194, is an interacting grand-design spiral galaxy with a Seyfert 2 active galactic nucleus. It lies in the constellation Canes Venatici, and was the first galaxy to be classified as a spiral galaxy. It is between 23 and 31 million light-years away and 76,900 ly (23,580 pc) in diameter.

<span class="mw-page-title-main">Messier 94</span> Galaxy in the constellation Canes Venatici

Messier 94 is a spiral galaxy in the mid-northern constellation Canes Venatici. It was discovered by Pierre Méchain in 1781, and catalogued by Charles Messier two days later. Although some references describe M94 as a barred spiral galaxy, the "bar" structure appears to be more oval-shaped. The galaxy has two ring structures.

<span class="mw-page-title-main">Eridanus (constellation)</span> Constellation in the southern hemisphere

Eridanus is a constellation in the southern celestial hemisphere. It is represented as a river. One of the 48 constellations listed by the 2nd century astronomer Ptolemy, it remains one of the 88 modern constellations. It is the sixth largest of the modern constellations, and the one that extends farthest in the sky from north to south. The same name was later taken as a Latin name for the real Po River and also for the name of a minor river in Athens.

<span class="mw-page-title-main">Boötes Void</span> Enormous, approximately-spherical region of space containing very few galaxies

The Boötes Void is an approximately spherical region of space found in the vicinity of the constellation Boötes, containing very few galaxies, hence its name. It is enormous, with a radius of 62 megaparsecs. Its centre is located at approximately right ascension 14h 50m and declination 46°.

The Northern Local Supervoid is a region of space devoid of rich clusters of galaxies, known as a void. It is the closest supervoid and is located between the Virgo (Local), Coma and Hercules superclusters. On the sky, it is located between Boötes, Virgo, and Serpens Caput constellations. It contains a few small galaxies and galaxy clusters, but is mostly empty. The faint galaxies within this void divide the region into smaller voids, which are 3–10 times smaller than the supervoid. The center is located 61 Mpc (199 Mly) away at approximately and it is 104 Mpc (339 Mly) in diameter across its narrowest width.

The M94 Group is a loose, extended group of galaxies located about 13 million light-years away in the constellations Canes Venatici and Coma Berenices. The group is one of many groups that lies within the Virgo Supercluster and one of the closest groups to the Local Group.

<span class="mw-page-title-main">Sloan Great Wall</span> Cosmic structure formed by a galaxy filament

The Sloan Great Wall (SGW) is a cosmic structure formed by a giant wall of galaxies. Its discovery was announced from Princeton University on October 20, 2003, by J. Richard Gott III, Mario Jurić, and their colleagues, based on data from the Sloan Digital Sky Survey.

The Shapley Supercluster or Shapley Concentration is the largest concentration of galaxies in our nearby universe that forms a gravitationally interacting unit, thereby pulling itself together instead of expanding with the universe. It appears as a striking overdensity in the distribution of galaxies in the constellation of Centaurus. It is 650 million light-years away (z=0.046).

<span class="mw-page-title-main">NGC 4449</span> Galaxy in the constellation Canes Venatici

NGC 4449, also known as Caldwell 21, is an irregular Magellanic type galaxy in the constellation Canes Venatici, being located about 13 million light-years away. It is part of the M94 Group or Canes Venatici I Group that is relatively close to the Local Group hosting our Milky Way galaxy.

<span class="mw-page-title-main">CMB cold spot</span> Region in space

The CMB Cold Spot or WMAP Cold Spot is a region of the sky seen in microwaves that has been found to be unusually large and cold relative to the expected properties of the cosmic microwave background radiation (CMBR). The "Cold Spot" is approximately 70 µK (0.00007 K) colder than the average CMB temperature, whereas the root mean square of typical temperature variations is only 18 µK. At some points, the "cold spot" is 140 µK colder than the average CMB temperature.

<span class="mw-page-title-main">Location of Earth</span> Knowledge of the location of Earth

Knowledge of the location of Earth has been shaped by 400 years of telescopic observations, and has expanded radically since the start of the 20th century. Initially, Earth was believed to be the center of the Universe, which consisted only of those planets visible with the naked eye and an outlying sphere of fixed stars. After the acceptance of the heliocentric model in the 17th century, observations by William Herschel and others showed that the Sun lay within a vast, disc-shaped galaxy of stars. By the 20th century, observations of spiral nebulae revealed that the Milky Way galaxy was one of billions in an expanding universe, grouped into clusters and superclusters. By the end of the 20th century, the overall structure of the visible universe was becoming clearer, with superclusters forming into a vast web of filaments and voids. Superclusters, filaments and voids are the largest coherent structures in the Universe that we can observe. At still larger scales the Universe becomes homogeneous, meaning that all its parts have on average the same density, composition and structure.

<span class="mw-page-title-main">NGC 4889</span> Galaxy in the constellation Coma Berenices

NGC 4889 is an E4 supergiant elliptical galaxy. It was discovered in 1785 by the British astronomer Frederick William Herschel I, who catalogued it as a bright, nebulous patch. The brightest galaxy within the northern Coma Cluster, it is located at a median distance of 94 million parsecs from Earth. At the core of the galaxy is a supermassive black hole that heats the intracluster medium through the action of friction from infalling gases and dust. The gamma ray bursts from the galaxy extend out to several million light years of the cluster.

<span class="mw-page-title-main">Hercules Superclusters</span> Superclusters in the constellation Hercules

The Hercules Superclusters refers to a set of two nearby superclusters of galaxies.

<span class="mw-page-title-main">Void (astronomy)</span> Vast empty spaces between filaments with few or no galaxies

Cosmic voids are vast spaces between filaments, which contain very few or no galaxies. The cosmological evolution of the void regions differs drastically from the evolution of the Universe as a whole: there is a long stage when the curvature term dominates, which prevents the formation of galaxy clusters and massive galaxies. Hence, although even the emptiest regions of voids contain more than ~15% of the average matter density of the Universe, the voids look almost empty to an observer. Voids typically have a diameter of 10 to 100 megaparsecs ; particularly large voids, defined by the absence of rich superclusters, are sometimes called supervoids. They were first discovered in 1978 in a pioneering study by Stephen Gregory and Laird A. Thompson at the Kitt Peak National Observatory.

The KBC Void is an immense, comparatively empty region of space, named after astronomers Ryan Keenan, Amy Barger, and Lennox Cowie, who studied it in 2013. The existence of a local underdensity has been the subject of many pieces of literature and research articles.

References

  1. 1 2 3 4 5 Kopylov, A. I.; Kopylova, F. G. (February 2002). "Search for streaming motion of galaxy clusters around the Giant Void" (PDF). Astronomy & Astrophysics . 382 (2): 389–396. Bibcode:2002A&A...382..389K. doi: 10.1051/0004-6361:20011500 . Archived (PDF) from the original on 2018-07-18.
  2. "The Northern Cone of Metagalaxy" (Kopylov et al. 1988)
  3. Moon, Timur (19 May 2013). "Planck Space Data Yields Evidence of Universes Beyond Our Own". International Business Times . Retrieved 27 July 2014.
  4. Cauchi, Stephen (9 December 2007). "Into the void: a glimpse of our tiny place in the scheme of things". The Age . Retrieved 27 July 2014.