Fizeau experiment

Last updated

Figure 1. Apparatus used in the Fizeau experiment Fizeau-Mascart2.png
Figure 1. Apparatus used in the Fizeau experiment

The Fizeau experiment was carried out by Hippolyte Fizeau in 1851 to measure the relative speeds of light in moving water. Fizeau used a special interferometer arrangement to measure the effect of movement of a medium upon the speed of light.

Contents

According to the theories prevailing at the time, light traveling through a moving medium would be dragged along by the medium, so that the measured speed of the light would be a simple sum of its speed through the medium plus the speed of the medium. Fizeau indeed detected a dragging effect, but the magnitude of the effect that he observed was far lower than expected. When he repeated the experiment with air in place of water he observed no effect. His results seemingly supported the partial aether-drag hypothesis of Augustin-Jean Fresnel, a situation that was disconcerting to most physicists. Over half a century passed before a satisfactory explanation of Fizeau's unexpected measurement was developed with the advent of Albert Einstein's theory of special relativity. Einstein later pointed out the importance of the experiment for special relativity, in which it corresponds to the relativistic velocity-addition formula when restricted to small velocities.

Although it is referred to as the Fizeau experiment, Fizeau was an active experimenter who carried out a wide variety of different experiments involving measuring the speed of light in various situations.

Background

As scientists in the 1700's worked on a theory of light and of electromagnetism, luminiferous aether, a medium that would support waves, was the focus of many experiments. [S 1] :98 Two critical issues were the relation of aether to motion and its relation to matter. For example, astronomical aberration, the apparent motion of stars observed at different times of year, was proposed to be related to starlight propagated through an aether. [S 1] :108 In 1846 Fresnel proposed that the portion aether that will move with an object relates to the object's index of refraction of light, which was take to be the ratio of the speed of light in the material to the speed of light in interstellar space. [S 1] :110 Having recently measured the speed of light in air and water, Fizeau set out to measure the speed of light in moving water. [S 2]

Experimental setup

Figure 2. Highly simplified representation of Fizeau's experiment. Fizeau experiment schematic.svg
Figure 2. Highly simplified representation of Fizeau's experiment.
Figure 3. Interferometer setup in the Fizeau Experiment (1851) Fizeau interferometer.JPG
Figure 3. Interferometer setup in the Fizeau Experiment (1851)

A highly simplified representation of Fizeau's 1851 experiment is presented in Fig. 2. Incoming light is split into two beams by a beam splitter (BS) and passed through two columns of water flowing in opposite directions. The two beams are then recombined to form an interference pattern that can be interpreted by an observer.

The simplified arrangement illustrated in Fig. 2 would have required the use of monochromatic light, which would have enabled only dim fringes. Because of white light's short coherence length, use of white light would have required matching up the optical paths to an impractical degree of precision, and the apparatus would have been extremely sensitive to vibration, motion shifts, and temperature effects.

Fizeau's actual apparatus, illustrated in Fig. 3 and Fig. 4, was set up as a common-path interferometer. This guaranteed that the opposite beams would pass through equivalent paths, so that fringes readily formed even when using the sun as a light source.

The double transit of the light was for the purpose of augmenting the distance traversed in the medium in motion, and further to compensate entirely any accidental difference of temperature or pressure between the two tubes, from which might result a displacement of the fringes, which would be mingled with the displacement which the motion alone would have produced; and thus have rendered the observation of it uncertain. [P 1]

Fizeau
Figure 4. Setup of the Fizeau Experiment (1851) Fizeau-Mascart1 retouched.png
Figure 4. Setup of the Fizeau Experiment (1851)

A light ray emanating from the source S is reflected by a beam splitter G and is collimated into a parallel beam by lens L. After passing the slits O1 and O2, two rays of light travel through the tubes A1 and A2, through which water is streaming back and forth as shown by the arrows. The rays reflect off a mirror m at the focus of lens L, so that one ray always propagates in the same direction as the water stream, and the other ray opposite to the direction of the water stream. After passing back and forth through the tubes, both rays unite at S, where they produce interference fringes that can be visualized through the illustrated eyepiece. The interference pattern can be analyzed to determine the speed of light traveling along each leg of the tube. [P 1] [P 2] [S 3]

Result

Fizeau's experiment showed a faster speed of light in water moving in the same direction and a slower speed when the water moved opposite the light. However the amount of difference in the speed of light was only a fraction of the water speed. Interpreted in terms of the aether theory, the water seemed to drag the aether and thus the light propagation, but only partially. [1] :53

Impact

At the time of Fizeau's experiment, two different models of how aether related to moving bodies were discussed, Fresnel's partial drag hypothesis and George Stokes' complete aether drag hypothesis. Fresnel had Augustin-Jean Fresnel (1818) proposed his model to explain an 1810 experiment by Arago. In 1845 Stokes showed that complete aether drag could also explain it. Since Fresnel had no model to explain partial drag, scientists favored Stokes explanation. [S 4]

According to the Stokes' hypothesis, the speed of light should be increased or decreased when "dragged" along by the water through the aether frame, dependent upon the direction. [S 5] :33 The overall speed of a beam of light should be a simple additive sum of its speed through the water plus the speed of the water. That is, if n is the index of refraction of water, so that c/n is the speed of light in stationary water, then the predicted speed of light w in one arm would be [S 2] :40

and the predicted speed in the other arm would be

for water with velocity . Hence light traveling against the flow of water should be slower than light traveling with the flow of water. The interference pattern between the two beams when the light is recombined at the observer depends upon the transit times over the two paths. [S 6]

However Fizeau found that

In other words, light appeared to be dragged by the water, but the magnitude of the dragging was much lower than expected.

The Fizeau experiment forced physicists to accept the empirical validity of an Fresnel's model, that a medium moving through the stationary aether drags light propagating through it with only a fraction of the medium's speed, with a dragging coefficient f related to the index of refraction:

Although Fresnel's hypothesis was empirically successful in explaining Fizeau's results, many experts in the field, including Fizeau himself, found Fresnel's hypothesis partial aether-dragging unsatisfactory. Fresnel had found an empirical formula that worked but no mechanical model of the aether was used to derive it. [S 4]

Confirmation

Wilhelm Veltmann's colors of light

In 1870 Wilhelm Veltmann demonstrated that Fresnel's formula worked for different frequencies (colors) of light. According the Fresnel's model this would imply different amounts of eather drag for different colors of light. The velocity with white light, a mixture of colors, would be unexplained. [S 4]

Hoek experiment

An indirect confirmation of Fresnel's dragging coefficient was provided by Martin Hoek (1868). [P 3] His apparatus was similar to Fizeau's, though in his version only one arm contained an area filled with resting water, while the other arm was in the air. As seen by an observer resting in the aether, Earth and hence the water is in motion. So the following travel times of two light rays traveling in opposite directions were calculated by Hoek (neglecting the transverse direction, see image):

Figure 6. Hoek expected the observed spectrum to be continuous with the apparatus oriented transversely to the aether wind, and to be banded with the apparatus oriented parallel to the wind. In the actual experiment, he observed no banding regardless of the instrument's orientation. HoekExperiment with expected results.png
Figure 6. Hoek expected the observed spectrum to be continuous with the apparatus oriented transversely to the aether wind, and to be banded with the apparatus oriented parallel to the wind. In the actual experiment, he observed no banding regardless of the instrument's orientation.

The travel times are not the same, which should be indicated by an interference shift. However, if Fresnel's dragging coefficient is applied to the water in the aether frame, the travel time difference (to first order in v/c) vanishes. Upon turning the apparatus table 180 degrees, altering the direction of a hypothetical aether wind, Hoek obtained a null result, confirming Fresnel's dragging coefficient. [S 5] [S 1] :111

In the particular version of the experiment shown here, Hoek used a prism P to disperse light from a slit into a spectrum which passed through a collimator C before entering the apparatus. With the apparatus oriented parallel to the hypothetical aether wind, Hoek expected the light in one circuit to be retarded 7/600 mm with respect to the other. Where this retardation represented an integral number of wavelengths, he expected to see constructive interference; where this retardation represented a half-integral number of wavelengths, he expected to see destructive interference. In the absence of dragging, his expectation was for the observed spectrum to be continuous with the apparatus oriented transversely to the aether wind, and to be banded with the apparatus oriented parallel to the aether wind. His actual experimental results were completely negative. [P 3] [S 5]

Mascart's birefringence experiment

Éleuthère Mascart (1872) demonstrated a result for polarized light traveling through a birefringent medium gives different velocities in accordance with Fresnel's empirical formula. However, the result in terms of Fresnel's physical model requires different aether drag in different direction in the medium. [S 4]

Michelson and Morley confirmation

Figure 5. Improved Fizeau type experiment by Michelson and Morley in 1886. Collimated light from source a falls on beam splitter b where it divides: one part follows the path b c d e f b g and the other the path b f e d c b g. MM86-5.png
Figure 5. Improved Fizeau type experiment by Michelson and Morley in 1886. Collimated light from source a falls on beam splitter b where it divides: one part follows the path b c d e f b g and the other the path b f e d c b g.

Albert A. Michelson and Edward W. Morley (1886) [P 4] repeated Fizeau's experiment with improved accuracy, [S 7] :113 addressing several concerns with Fizeau's original experiment: (1) Deformation of the optical components in Fizeau's apparatus could cause artifactual fringe displacement; (2) observations were rushed, since the pressurized flow of water lasted only a short time; (3) the laminar flow profile of water flowing through Fizeau's small diameter tubes meant that only their central portions were available, resulting in faint fringes; (4) there were uncertainties in Fizeau's determination of flow rate across the diameter of the tubes. Michelson redesigned Fizeau's apparatus with larger diameter tubes and a large reservoir providing three minutes of steady water flow. His common-path interferometer design provided automatic compensation of path length, so that white light fringes were visible at once as soon as the optical elements were aligned. Topologically, the light path was that of a Sagnac interferometer with an even number of reflections in each light path. [S 8] This offered extremely stable fringes that were, to first order, completely insensitive to any movement of its optical components. The stability was such that it was possible for him to insert a glass plate at h or even to hold a lighted match in the light path without displacing the center of the fringe system. Using this apparatus, Michelson and Morley were able to completely confirm Fizeau's results not just in water, but also in air. [P 4]

Zeeman and Lorentz's improved formula

In 1895, Hendrik Lorentz predicted the existence of an extra term due to dispersion: [S 9] :15–20

Since the medium is flowing towards or away from the observer, the light traveling through the medium is Doppler-shifted, and the refractive index used in the formula has to be that appropriate to the Doppler-shifted wavelength. [P 5] Zeeman verified the existence of Lorentz' dispersion term in 1915. [P 6] Using a scaled-up version of Michelson's apparatus connected directly to Amsterdam's main water conduit, Zeeman was able to perform extended measurements using monochromatic light ranging from violet (4358 Å) through red (6870 Å) to confirm Lorentz's modified coefficient. [P 7] [P 6]

Later confirmations

In 1910, Franz Harress used a rotating device and overall confirmed Fresnel's dragging coefficient. However, he additionally found a "systematic bias" in the data, which later turned out to be the Sagnac effect. [S 10]

Since then, many experiments have been conducted measuring such dragging coefficients in a diversity of materials of differing refractive index, often in combination with the Sagnac effect. [S 11] For instance, in experiments using ring lasers together with rotating disks, [P 8] [P 9] [P 10] [P 11] or in neutron interferometric experiments. [P 12] [P 13] [P 14] Also a transverse dragging effect was observed, i.e. when the medium is moving at right angles to the direction of the incident light. [P 5] [P 15]

Lorentz's interpretation

In 1892, Hendrik Lorentz proposed a modification of Fresnel's model, in which the aether is completely stationary. He succeeded in deriving Fresnel's dragging coefficient as the result of an interaction between the moving water with an undragged aether. [S 12] [S 13] :25–30 He also discovered that the transition from one to another reference frame could be simplified by using an auxiliary time variable which he called local time:

In 1895, Lorentz more generally explained Fresnel's coefficient based on the concept of local time. However, Lorentz's theory had the same fundamental problem as Fresnel's: a stationary aether contradicted the Michelson–Morley experiment. So in 1892 Lorentz proposed that moving bodies contract in the direction of motion (FitzGerald-Lorentz contraction hypothesis, since George FitzGerald had already arrived in 1889 at this conclusion). The equations that he used to describe these effects were further developed by him until 1904. These are now called the Lorentz transformations in his honor, and are identical in form to the equations that Einstein was later to derive from first principles. Unlike Einstein's equations, however, Lorentz's transformations were strictly ad hoc, their only justification being that they seemed to work. [S 12] [S 13] :27–30

Einstein's use of Fizeau's experiment

Einstein showed how Lorentz's equations could be derived as the logical outcome of a set of two simple starting postulates. In addition Einstein recognized that the stationary aether concept has no place in special relativity, and that the Lorentz transformation concerns the nature of space and time. Together with the moving magnet and conductor problem, the negative aether drift experiments, and the aberration of light, the Fizeau experiment was one of the key experimental results that shaped Einstein's thinking about relativity. [S 14] [S 15] Robert S. Shankland reported some conversations with Einstein, in which Einstein emphasized the importance of the Fizeau experiment: [S 16]

He continued to say the experimental results which had influenced him most were the observations of stellar aberration and Fizeau's measurements on the speed of light in moving water. "They were enough," he said.

Modern interpretation

Max von Laue (1907) demonstrated [P 16] that the Fresnel drag coefficient can be explained as a natural consequence of the relativistic formula for addition of velocities. [S 2] The speed of light in immobile water is c/n. From the velocity composition law it follows that the speed of light observed in the laboratory, where water is flowing with speed v (in the same direction as light) is Thus the difference in speed is (assuming v is small comparing to c, dropping higher order terms) This is accurate when v/c ≪ 1, and agrees with the formula based upon Fizeau's measurements, which satisfied the condition v/c ≪ 1.

Alternatively, the Fizeau result can be derived by applying Maxwell's equations to a moving medium. [2]

See also

Related Research Articles

<span class="mw-page-title-main">Aberration (astronomy)</span> Phenomenon wherein objects appear to move about their true positions in the sky

In astronomy, aberration is a phenomenon where celestial objects exhibit an apparent motion about their true positions based on the velocity of the observer: It causes objects to appear to be displaced towards the observer's direction of motion. The change in angle is of the order of v/c where c is the speed of light and v the velocity of the observer. In the case of "stellar" or "annual" aberration, the apparent position of a star to an observer on Earth varies periodically over the course of a year as the Earth's velocity changes as it revolves around the Sun, by a maximum angle of approximately 20 arcseconds in right ascension or declination.

<span class="mw-page-title-main">Luminiferous aether</span> Obsolete postulated medium for the propagation of light

Luminiferous aether or ether was the postulated medium for the propagation of light. It was invoked to explain the ability of the apparently wave-based light to propagate through empty space, something that waves should not be able to do. The assumption of a spatial plenum of luminiferous aether, rather than a spatial vacuum, provided the theoretical medium that was required by wave theories of light.

<span class="mw-page-title-main">Special relativity</span> Theory of interwoven space and time by Albert Einstein

In physics, the special theory of relativity, or special relativity for short, is a scientific theory of the relationship between space and time. In Albert Einstein's 1905 paper, On the Electrodynamics of Moving Bodies, the theory is presented as being based on just two postulates:

  1. The laws of physics are invariant (identical) in all inertial frames of reference. This is known as the principle of relativity.
  2. The speed of light in vacuum is the same for all observers, regardless of the motion of light source or observer. This is known as the principle of light constancy, or the principle of light speed invariance.
<span class="mw-page-title-main">Theory of relativity</span> Two interrelated physics theories by Albert Einstein

The theory of relativity usually encompasses two interrelated physics theories by Albert Einstein: special relativity and general relativity, proposed and published in 1905 and 1915, respectively. Special relativity applies to all physical phenomena in the absence of gravity. General relativity explains the law of gravitation and its relation to the forces of nature. It applies to the cosmological and astrophysical realm, including astronomy.

<span class="mw-page-title-main">Michelson–Morley experiment</span> 1887 investigation of the speed of light

The Michelson–Morley experiment was an attempt to measure the motion of the Earth relative to the luminiferous aether, a supposed medium permeating space that was thought to be the carrier of light waves. The experiment was performed between April and July 1887 by American physicists Albert A. Michelson and Edward W. Morley at what is now Case Western Reserve University in Cleveland, Ohio, and published in November of the same year.

<span class="mw-page-title-main">Woldemar Voigt</span> German physicist (1850–1919)

Woldemar Voigt was a German physicist.

<span class="mw-page-title-main">Kennedy–Thorndike experiment</span> Modified form of the Michelson–Morley experiment, testing special relativity

The Kennedy–Thorndike experiment, first conducted in 1932 by Roy J. Kennedy and Edward M. Thorndike, is a modified form of the Michelson–Morley experimental procedure, testing special relativity. The modification is to make one arm of the classical Michelson–Morley (MM) apparatus shorter than the other one. While the Michelson–Morley experiment showed that the speed of light is independent of the orientation of the apparatus, the Kennedy–Thorndike experiment showed that it is also independent of the velocity of the apparatus in different inertial frames. It also served as a test to indirectly verify time dilation – while the negative result of the Michelson–Morley experiment can be explained by length contraction alone, the negative result of the Kennedy–Thorndike experiment requires time dilation in addition to length contraction to explain why no phase shifts will be detected while the Earth moves around the Sun. The first direct confirmation of time dilation was achieved by the Ives–Stilwell experiment. Combining the results of those three experiments, the complete Lorentz transformation can be derived.

The timeline of luminiferous aether or ether as a medium for propagating electromagnetic radiation begins in the 18th century. The aether was assumed to exist for much of the 19th century—until the Michelson–Morley experiment returned its famous null result. Further experiments were in general agreement with Michelson and Morley's result. By the 1920s, most scientists rejected the aether's existence.

Special relativity is a physical theory that plays a fundamental role in the description of all physical phenomena, as long as gravitation is not significant. Many experiments played an important role in its development and justification. The strength of the theory lies in its unique ability to correctly predict to high precision the outcome of an extremely diverse range of experiments. Repeats of many of those experiments are still being conducted with steadily increased precision, with modern experiments focusing on effects such as at the Planck scale and in the neutrino sector. Their results are consistent with the predictions of special relativity. Collections of various tests were given by Jakob Laub, Zhang, Mattingly, Clifford Will, and Roberts/Schleif.

<span class="mw-page-title-main">Sagnac effect</span> Relativistic effect due to rotation

The Sagnac effect, also called Sagnac interference, named after French physicist Georges Sagnac, is a phenomenon encountered in interferometry that is elicited by rotation. The Sagnac effect manifests itself in a setup called a ring interferometer or Sagnac interferometer. A beam of light is split and the two beams are made to follow the same path but in opposite directions. On return to the point of entry the two light beams are allowed to exit the ring and undergo interference. The relative phases of the two exiting beams, and thus the position of the interference fringes, are shifted according to the angular velocity of the apparatus. In other words, when the interferometer is at rest with respect to a nonrotating frame, the light takes the same amount of time to traverse the ring in either direction. However, when the interferometer system is spun, one beam of light has a longer path to travel than the other in order to complete one circuit of the mechanical frame, and so takes longer, resulting in a phase difference between the two beams. Georges Sagnac set up this experiment in 1913 in an attempt to prove the existence of the aether that Einstein's theory of special relativity makes superfluous.

In the 19th century, the theory of the luminiferous aether as the hypothetical medium for the propagation of light waves was widely discussed. The aether hypothesis arose because physicists of that era could not conceive of light waves propagating without a physical medium in which to do so. When experiments failed to detect the hypothesized luminiferous aether, physicists conceived explanations for the experiments' failure which preserved the hypothetical aether's existence.

The history of special relativity consists of many theoretical results and empirical findings obtained by Albert A. Michelson, Hendrik Lorentz, Henri Poincaré and others. It culminated in the theory of special relativity proposed by Albert Einstein and subsequent work of Max Planck, Hermann Minkowski and others.

In 19th century physics, there were several situations in which the motion of matter might be said to drag light. This aether drag hypothesis was an attempt by classical physics to explain stellar aberration and the Fizeau experiment, but was discarded when Albert Einstein introduced his theory of relativity. Despite this, the expression light-dragging has remained in use somewhat, as discussed on this page.

What is now often called Lorentz ether theory (LET) has its roots in Hendrik Lorentz's "theory of electrons", which marked the end of the development of the classical aether theories at the end of the 19th and at the beginning of the 20th century.

The Hammar experiment was an experiment designed and conducted by Gustaf Wilhelm Hammar (1935) to test the aether drag hypothesis. Its negative result refuted some specific aether drag models, and confirmed special relativity.

Electromagnetic mass was initially a concept of classical mechanics, denoting as to how much the electromagnetic field, or the self-energy, is contributing to the mass of charged particles. It was first derived by J. J. Thomson in 1881 and was for some time also considered as a dynamical explanation of inertial mass per se. Today, the relation of mass, momentum, velocity, and all forms of energy – including electromagnetic energy – is analyzed on the basis of Albert Einstein's special relativity and mass–energy equivalence. As to the cause of mass of elementary particles, the Higgs mechanism in the framework of the relativistic Standard Model is currently used. However, some problems concerning the electromagnetic mass and self-energy of charged particles are still studied.

<span class="mw-page-title-main">Fizeau interferometer</span>

A Fizeau interferometer is an interferometric arrangement whereby two reflecting surfaces are placed facing each other. As seen in Fig 1, the rear-surface reflected light from the transparent first reflector is combined with front-surface reflected light from the second reflector to form interference fringes.

Test theories of special relativity give a mathematical framework for analyzing results of experiments to verify special relativity.

When using the term "the speed of light" it is sometimes necessary to make the distinction between its one-way speed and its two-way speed. The "one-way" speed of light, from a source to a detector, cannot be measured independently of a convention as to how to synchronize the clocks at the source and the detector. What can however be experimentally measured is the round-trip speed from the source to a mirror and back again to detector. Albert Einstein chose a synchronization convention that made the one-way speed equal to the two-way speed. The constancy of the one-way speed in any given inertial frame is the basis of his special theory of relativity, although all experimentally verifiable predictions of this theory do not depend on that convention.

<span class="mw-page-title-main">Timeline of special relativity and the speed of light</span>

This timeline describes the major developments, both experimental and theoretical, of:

References

  1. Rohrlich, Fritz (25 August 1989). From Paradox to Reality: Our Basic Concepts of the Physical World. Cambridge University Press. p. 54. ISBN   978-0-521-37605-1 . Retrieved 9 March 2023.
  2. Becker, Richard; Sauter, Fritz (1 January 1982). Electromagnetic Fields and Interactions. Courier Corporation. p. 308. ISBN   978-0-486-64290-1 . Retrieved 9 March 2023.
Secondary sources
  1. 1 2 3 4 Whittaker, E. T. (1989). A history of the theories of aether & electricity. New York: Dover Publications. ISBN   978-0-486-26126-3.
  2. 1 2 3 N David Mermin (2005). It's about time: understanding Einstein's relativity . Princeton University Press. pp.  39 ff. ISBN   0-691-12201-6.
  3. Mascart, Éleuthère Élie Nicolas (1889). Traité d'optique. Paris: Gauthier-Villars. p.  101 . Retrieved 9 August 2015.
  4. 1 2 3 4 Stachel, J. (2005). "Fresnel's (dragging) coefficient as a challenge to 19th century optics of moving bodies". In Kox, A.J.; Eisenstaedt, J (eds.). The universe of general relativity. Boston: Birkhäuser. pp. 1–13. ISBN   0-8176-4380-X . Retrieved 17 April 2012.
  5. 1 2 3 Rafael Ferraro (2007). "Hoek's experiment". Einstein's Space-Time: An Introduction to Special and General Relativity. Springer. pp. 33–35. ISBN   978-0-387-69946-2.
  6. Robert Williams Wood (1905). Physical Optics. The Macmillan Company. p.  514.
  7. Rosser, W. G. V. (6 January 1992). Introductory Special Relativity. CRC Press. p. 113. ISBN   978-0-85066-838-4 . Retrieved 9 March 2023.
  8. Hariharan, P. (2007). Basics of Interferometry, 2nd edition. Elsevier. p. 19. ISBN   978-0-12-373589-8.
  9. Pauli, Wolfgang (1981) [1921]. Theory of Relativity. New York: Dover. ISBN   0-486-64152-X.
  10. Anderson, R.; Bilger, H.R.; Stedman, G.E. (1994). "Sagnac effect: A century of Earth-rotated interferometers". Am. J. Phys. 62 (11): 975–985. Bibcode:1994AmJPh..62..975A. doi:10.1119/1.17656.
  11. Stedman, G. E. (1997). "Ring-laser tests of fundamental physics and geophysics". Reports on Progress in Physics. 60 (6): 615–688. Bibcode:1997RPPh...60..615S. doi:10.1088/0034-4885/60/6/001. S2CID   1968825.; see pp. 631–634, and references therein.
  12. 1 2 Janssen, Michel; Stachel, John (2010), "The Optics and Electrodynamics of Moving Bodies" (PDF), in John Stachel (ed.), Going Critical, Springer, ISBN   978-1-4020-1308-9
  13. 1 2 Miller, A.I. (1981). Albert Einstein's special theory of relativity. Emergence (1905) and early interpretation (1905–1911) . Reading: Addison–Wesley. ISBN   0-201-04679-2.
  14. Lahaye, Thierry; Labastie, Pierre; Mathevet, Renaud (2012). "Fizeau's "aether-drag" experiment in the undergraduate laboratory". American Journal of Physics. 80 (6): 497. arXiv: 1201.0501 . Bibcode:2012AmJPh..80..497L. doi:10.1119/1.3690117. S2CID   118401543.
  15. Norton, John D., John D. (2004), "Einstein's Investigations of Galilean Covariant Electrodynamics prior to 1905", Archive for History of Exact Sciences, 59 (1): 45–105, Bibcode:2004AHES...59...45N, doi:10.1007/s00407-004-0085-6, S2CID   17459755
  16. Shankland, R. S. (1963). "Conversations with Albert Einstein". American Journal of Physics. 31 (1): 47–57. Bibcode:1963AmJPh..31...47S. doi:10.1119/1.1969236.
Primary sources
  1. 1 2 Fizeau, H. (1851). "Sur les hypothèses relatives à l'éther lumineux". Comptes Rendus. 33: 349–355.
    English: Fizeau, H. (1851). "The Hypotheses Relating to the Luminous Aether, and an Experiment which Appears to Demonstrate that the Motion of Bodies Alters the Velocity with which Light Propagates itself in their Interior"  . Philosophical Magazine. 2: 568–573.
  2. Fizeau, H. (1859). "Sur les hypothèses relatives à l'éther lumineux". Ann. Chim. Phys. 57: 385–404.
    English: Fizeau, H. (1860). "On the Effect of the Motion of a Body upon the Velocity with which it is traversed by Light"  . Philosophical Magazine. 19: 245–260.
  3. 1 2 Hoek, M. (1868). "Determination de la vitesse avec laquelle est entrainée une onde lumineuse traversant un milieu en mouvement"  . Verslagen en Mededeelingen. 2: 189–194.
  4. 1 2 Michelson, A. A.; Morley, E.W. (1886). "Influence of Motion of the Medium on the Velocity of Light". Am. J. Sci. 31 (185): 377–386. Bibcode:1886AmJS...31..377M. doi:10.2475/ajs.s3-31.185.377. S2CID   131116577.
  5. 1 2 Jones, R. V. (1972). "'Fresnel Aether Drag' in a Transversely Moving Medium". Proceedings of the Royal Society A. 328 (1574): 337–352. Bibcode:1972RSPSA.328..337J. doi:10.1098/rspa.1972.0081. S2CID   122749907.
  6. 1 2 Zeeman, Pieter (1915). "Fresnel's coefficient for light of different colours. (Second part)". Proc. Kon. Acad. Van Weten. 18: 398–408. Bibcode:1915KNAB...18..398Z.
  7. Zeeman, Pieter (1914). "Fresnel's coefficient for light of different colours. (First part)". Proc. Kon. Acad. Van Weten. 17: 445–451. Bibcode:1914KNAB...17..445Z.
  8. Macek, W. M. (1964). "Measurement of Fresnel Drag with the Ring Laser". Journal of Applied Physics. 35 (8): 2556–2557. Bibcode:1964JAP....35.2556M. doi:10.1063/1.1702908.
  9. Bilger, H. R.; Zavodny, A. T. (1972). "Fresnel Drag in a Ring Laser: Measurement of the Dispersive Term". Physical Review A. 5 (2): 591–599. Bibcode:1972PhRvA...5..591B. doi:10.1103/PhysRevA.5.591.
  10. Bilger, H. R.; Stowell, W. K. (1977). "Light drag in a ring laser – An improved determination of the drag coefficient". Physical Review A. 16 (1): 313–319. Bibcode:1977PhRvA..16..313B. doi:10.1103/PhysRevA.16.313.
  11. Sanders, G. A.; Ezekiel, Shaoul (1988). "Measurement of Fresnel drag in moving media using a ring-resonator technique". Journal of the Optical Society of America B. 5 (3): 674–678. Bibcode:1988JOSAB...5..674S. doi:10.1364/JOSAB.5.000674. S2CID   14298827.
  12. Klein, A. G.; Opat, G. I.; Cimmino, A.; Zeilinger, A.; Treimer, W.; Gähler, R. (1981). "Neutron Propagation in Moving Matter: The Fizeau Experiment with Massive Particles". Physical Review Letters. 46 (24): 1551–1554. Bibcode:1981PhRvL..46.1551K. doi:10.1103/PhysRevLett.46.1551.
  13. Bonse, U.; Rumpf, A. (1986). "Interferometric measurement of neutron Fizeau effect". Physical Review Letters. 56 (23): 2441–2444. Bibcode:1986PhRvL..56.2441B. doi:10.1103/PhysRevLett.56.2441. PMID   10032993.
  14. Arif, M.; Kaiser, H.; Clothier, R.; Werner, S. A.; Hamilton, W. A.; Cimmino, A.; Klein, A. G. (1989). "Observation of a motion-induced phase shift of neutron de Broglie waves passing through matter near a nuclear resonance". Physical Review A. 39 (3): 931–937. Bibcode:1989PhRvA..39..931A. doi:10.1103/PhysRevA.39.931. PMID   9901325.
  15. Jones, R. V. (1975). ""Aether Drag" in a Transversely Moving Medium". Proceedings of the Royal Society A. 345 (1642): 351–364. Bibcode:1975RSPSA.345..351J. doi:10.1098/rspa.1975.0141. S2CID   122055338.
  16. Laue, Max von (1907), "Die Mitführung des Lichtes durch bewegte Körper nach dem Relativitätsprinzip" [ The Entrainment of Light by Moving Bodies in Accordance with the Principle of Relativity ], Annalen der Physik, 328 (10): 989–990, Bibcode:1907AnP...328..989L, doi:10.1002/andp.19073281015