Measurements of neutrino speed have been conducted as tests of special relativity and for the determination of the mass of neutrinos. Astronomical searches investigate whether light and neutrinos emitted simultaneously from a distant source are arriving simultaneously on Earth. Terrestrial searches include time of flight measurements using synchronized clocks, and direct comparison of neutrino speed with the speed of other particles.
Since it is established that neutrinos possess mass, the speed of neutrinos of kinetic energies ranging from MeV to GeV should be slightly lower than the speed of light in accordance with special relativity. Existing measurements provided upper limits for deviations from light speed of approximately 10−9, or a few parts per billion. Within the margin of error this is consistent with no deviation at all.
Energy | 10 eV | 1 KeV | 1 MeV | 1 GeV | 1 TeV |
It was assumed for a long time in the framework of the standard model of particle physics that neutrinos are massless. Thus, they should travel at exactly the speed of light, according to special relativity. However, since the discovery of neutrino oscillations, it is assumed that they possess some small amount of mass. [1] Thus, they should travel slightly slower than light, otherwise their relativistic energy would become infinitely large. This energy is given by the formula:
with v being the neutrino speed and c the speed of light. The neutrino mass m is currently estimated as being 2 eV/c², and is possibly even lower than 0.2 eV/c². According to the latter mass value and the formula for relativistic energy, relative speed differences between light and neutrinos are smaller at high energies, and should arise as indicated in the figure on the right.
Time-of-flight measurements conducted so far investigated neutrinos of energy above 10 MeV. However, velocity differences predicted by relativity at such high energies cannot be determined with the current precision of time measurement. The reason why such measurements are still conducted is connected with the theoretical possibility that significantly larger deviations from light speed might arise under certain circumstances. For instance, it was postulated that neutrinos might be some sort of superluminal particles called tachyons, [2] even though others criticized this proposal. [3] While hypothetical tachyons are thought to be compatible with Lorentz invariance, superluminal neutrinos have also been studied in Lorentz invariance violating frameworks as motivated by speculative variants of quantum gravity, such as the Standard-Model Extension according to which Lorentz-violating neutrino oscillations can arise. [4] Besides time-of-flight measurements, those models also allow for indirect determinations of neutrino speed and other modern searches for Lorentz violation. All of those experiments confirmed Lorentz invariance and special relativity.
Fermilab conducted in the 1970s a series of terrestrial measurements, in which the speed of muons was compared with that of neutrinos and antineutrinos of energies between 30 and 200 GeV. The Fermilab narrow band neutrino beam was generated as follows: 400-GeV protons are hitting the target and causing the production of secondary beams consisting of pions and kaons. Then they are decaying in an evacuated decay tube of 235 meter length. The remaining hadrons were stopped by a secondary dump, so that only neutrinos and some energetic muons can penetrate the earth- and steel shield of 500 meter length, in order to reach the particle detector.
Since the protons are transferred in bunches of one nanosecond duration at an interval of 18.73 ns, the speed of muons and neutrinos could be determined. A speed difference would lead to an elongation of the neutrino bunches and to a displacement of the whole neutrino time spectrum. At first, the speeds of muons and neutrinos were compared. [5] Later, also antineutrinos were observed. [6] The upper limit for deviations from light speed was:
This was in agreement with the speed of light within the measurement accuracy (95% confidence level), and also no energy dependence of neutrino speeds could be found at this accuracy.
The most precise agreement with the speed of light (as of 2012 [update] ) was determined in 1987 by the observation of electron antineutrinos of energies between 7.5 and 35 MeV originated at the Supernova 1987A at a distance of 157000 ± 16000 light years. The upper limit for deviations from light speed was:
thus more than 0.999999998 times the speed of light. This value was obtained by comparing the arrival times of light and neutrinos. The difference of approximately three hours was explained by the circumstance, that the almost noninteracting neutrinos could pass the supernova unhindered while light required a longer time. [7] [8] [9] [10]
The first terrestrial measurement of the absolute transit time was conducted by MINOS (2007) at Fermilab. In order to generate neutrinos (the so-called NuMI beam) they used the Fermilab Main Injector, by which 120-GeV-protons were directed to a graphite target in 5 to 6 batches per spill. The emerging mesons decayed in a 675 meter long decay tunnel into muon neutrinos (93%) and muon antineutrinos (6%). The travel time was determined by comparing the arrival times at the MINOS near- and far detector, apart from each other by 734 km. The clocks of both stations were synchronized by GPS, and long optical fibers were used for signal transmission. [11]
They measured an early neutrino arrival of approximately 126 ns. Thus the relative speed difference was (68% confidence limit). This corresponds to 1.000051±29 times the speed of light, thus apparently faster than light. The major source of error were uncertainties in the fiber optic delays. The statistical significance of this result was less than 1.8σ, thus it was not significant since 5σ is required to be accepted as a scientific discovery.
At 99% confidence level it was given [11]
a neutrino speed larger than 0.999976c and lower than 1.000126c. Thus the result is also compatible with subluminal speeds.
In the OPERA experiment, 17-GeV neutrinos have been used, split in proton extractions of 10.5 µs length generated at CERN, which hit a target at a distance of 743 km. Then pions and kaons are produced which partially decayed into muons and muon neutrinos (CERN Neutrinos to Gran Sasso, CNGS). The neutrinos traveled further to the Laboratori Nazionali del Gran Sasso (LNGS) 730 km away, where the OPERA detector is located. GPS was used to synchronize the clocks and to determine the exact distance. In addition, optical fibers were used for signal transmission at LNGS. The temporal distribution of the proton extractions was statistically compared with approximately 16000 neutrino events. OPERA measured an early neutrinos arrival of approximately 60 nanoseconds, as compared to the expected arrival at the speed of light, thus indicating a neutrino speed faster than that of light. Contrary to the MINOS result, the deviation was 6σ and thus apparently significant. [12] [13] [14]
To exclude possible statistical errors, CERN produced bunched proton beams between October and November 2011. The proton extractions were split into short bunches of 3 ns at intervals of 524 ns, so that every neutrino event could be directly connected to a proton bunch. The measurement of twenty neutrino events again gave an early arrival of about 62 ns, in agreement with the previous result. They updated their analysis and increased the significance up to 6,2σ. [15] [16]
In February and March 2012, it was shown that there were two mistakes in the experimental equipment: An erroneous cable connection at a computer card, making the neutrinos appearing faster than expected. The other one was an oscillator out of its specification, making the neutrinos appearing slower than expected. Then the time of arrival of cosmic high-energy muons at OPERA and the co-located LVD detector between 2007 and 2008, 2008–2011, and 2011–2012 were compared. It was found out that between 2008 and 2011, the cable connector error caused a deviation of approximately 73 ns, and the oscillator error caused ca. 15 ns in the opposite direction. [17] [18] This and the measurement of neutrino velocities consistent with the speed of light by the ICARUS collaboration (see ICARUS (2012)), indicated that the neutrinos were probably not faster than light. [19]
Finally, in July 2012 the OPERA collaboration published a new analysis of their data from 2009 to 2011, which included the instrumental effects stated above, and obtained bounds for arrival time differences (compared to the speed of light):
and bounds for speed differences:
Also the corresponding new analysis for the bunched beam of October and November 2011 agreed with this result:
Although at the extremes of error these results still allow for superluminal neutrino velocities, they are predominantly consistent with the speed of light, and the bound for the speed difference is more precise by one order of magnitude than previous terrestrial time-of-flight measurements. [20]
Continuing the OPERA and ICARUS measurements, the LNGS experiments Borexino, LVD, OPERA and ICARUS conducted new tests between 10 and 24 May 2012, after CERN provided another bunched beam rerun. All measurements were consistent with the speed of light. [19] The 17-GeV muon neutrino beam consisted of 4 batches per extraction separated by ~300ns, and the batches consisted of 16 bunches separated by ~100ns, with a bunch width of ~2ns. [21]
The Borexino collaboration analyzed both the bunched beam rerun of Oct.–Nov. 2011 and the second rerun of May 2012. [21] For the 2011 data, they evaluated 36 neutrino events and obtained an upper limit for time of flight differences:
For the May 2012 measurements, they improved their equipment by installing a new analogue small–jitter triggering system and a geodetic GPS receiver coupled to a Rb clock. [22] They also conducted an independent high precision geodesy measurement together with LVD and ICARUS. 62 neutrino events could be used for the final analysis, giving a more precise upper limit for time of flight differences [21]
corresponding to
The LVD collaboration first analyzed the beam rerun of Oct.–Nov. 2011. They evaluated 32 neutrino events and obtained an upper limit for time of flight differences: [23]
In the May 2012 measurements, they used the new LNGS timing facility by the Borexino collaboration, and the geodetic data obtained by LVD, Borexino, and ICARUS (see above). They also updated their Scintillation counters and the trigger. 48 neutrino events (at energies above 50 MeV, average neutrino energy was 17 GeV) have been used for the May analysis, improving the upper limit for time of flight differences [23]
corresponding to
After publishing the analysis of the beam rerun of Oct.–Nov. 2011 (see above), the ICARUS collaboration also provided an analysis of the May rerun. They substantially improved their own internal timing system and between CERN-LNGS, used the geodetic LNGS measurement together with Borexino and LVD, and employed Borexino's timing facility. 25 neutrino events have been evaluated for the final analysis, yielding an upper limit for time of flight differences: [24]
corresponding to
Neutrino velocities exceeding the speed of light by more than (95% C.L.) are excluded.
After the correction of the initial results, OPERA published their May 2012 measurements as well. [25] An additional, independent timing system and four different methods of analysis were used for the evaluation of the neutrino events. They provided an upper limit for time of flight differences between light and muon neutrinos (48 to 59 neutrino events depending on the method of analysis):
and between light and anti-muon neutrinos (3 neutrino events):
consistent with the speed of light in the range of
The MINOS collaboration further elaborated on their speed measurements of 2007. They examined the data collected over seven years, improved the GPS timing system and the understanding of the delays of electronic components, and also used upgraded timing equipment. The neutrinos span a 10 μs spill containing 5-6 batches. The analyses have been conducted in two ways. First, as in the 2007 measurement, the data at the far detector was statistically determined by the data of the near detector ("Full Spill Approach"): [26] [27]
Second, the data connected with the batches themselves have been used ("Wrapped Spill Approach"):
This is consistent with neutrinos traveling at the speed of light, and substantially improves their preliminary 2007 results.
In order to further improve the precision, a new timing system was developed. In particular, a "Resistive Wall Current Monitor" (RWCM) measuring the time distribution of the proton beam, CS atomic clocks, dual frequency GPS receivers, and auxiliary detectors to measure detector latencies have been installed. For the analysis, the neutrino events could be connected with a specific 10μs proton spill, from which a likelihood analysis was generated, and then the likelihoods of different events have been combined. The result: [28] [29]
and
This was confirmed in the final publication in 2015. [30]
Lorentz-violating frameworks such as the Standard-Model Extension including Lorentz-violating neutrino oscillations also allow for indirect determinations of deviations between light speed and neutrino speed by measuring their energy and the decay rates of other particles over large distances. [4] By this method, much more stringent bounds can be obtained, such as by Stecker et al.: [31]
For more such indirect bounds on superluminal neutrinos, see Modern searches for Lorentz violation § Neutrino speed.
Faster-than-light travel and communication are the conjectural propagation of matter or information faster than the speed of light. The special theory of relativity implies that only particles with zero rest mass may travel at the speed of light, and that nothing may travel faster.
A neutrino is a fermion that interacts only via the weak interaction and gravity. The neutrino is so named because it is electrically neutral and because its rest mass is so small (-ino) that it was long thought to be zero. The rest mass of the neutrino is much smaller than that of the other known elementary particles. The weak force has a very short range, the gravitational interaction is extremely weak due to the very small mass of the neutrino, and neutrinos do not participate in the electromagnetic interaction or the strong interaction. Thus, neutrinos typically pass through normal matter unimpeded and undetected.
The muon neutrino is an elementary particle which has the symbol
ν
μ and zero electric charge. Together with the muon it forms the second generation of leptons, hence the name muon neutrino. It was discovered in 1962 by Leon Lederman, Melvin Schwartz and Jack Steinberger. The discovery was rewarded with the 1988 Nobel Prize in Physics.
ATLAS is the largest general-purpose particle detector experiment at the Large Hadron Collider (LHC), a particle accelerator at CERN in Switzerland. The experiment is designed to take advantage of the unprecedented energy available at the LHC and observe phenomena that involve highly massive particles which were not observable using earlier lower-energy accelerators. ATLAS was one of the two LHC experiments involved in the discovery of the Higgs boson in July 2012. It was also designed to search for evidence of theories of particle physics beyond the Standard Model.
Neutrino astronomy is the branch of astronomy that observes astronomical objects with neutrino detectors in special observatories. Neutrinos are created as a result of certain types of radioactive decay, nuclear reactions such as those that take place in the Sun or high energy astrophysical phenomena, in nuclear reactors, or when cosmic rays hit atoms in the atmosphere. Neutrinos rarely interact with matter, meaning that it is unlikely for them to scatter along their trajectory, unlike photons. Therefore, neutrinos offer a unique opportunity to observe processes that are inaccessible to optical telescopes, such as reactions in the Sun's core. Neutrinos can also offer a very strong pointing direction compared to charged particle cosmic rays.
The Kamioka Liquid Scintillator Antineutrino Detector (KamLAND) is an electron antineutrino detector at the Kamioka Observatory, an underground neutrino detection facility in Hida, Gifu, Japan. The device is situated in a drift mine shaft in the old KamiokaNDE cavity in the Japanese Alps. The site is surrounded by 53 Japanese commercial nuclear reactors. Nuclear reactors produce electron antineutrinos () during the decay of radioactive fission products in the nuclear fuel. Like the intensity of light from a light bulb or a distant star, the isotropically-emitted flux decreases at 1/R2 per increasing distance R from the reactor. The device is sensitive up to an estimated 25% of antineutrinos from nuclear reactors that exceed the threshold energy of 1.8 megaelectronvolts (MeV) and thus produces a signal in the detector.
Main injector neutrino oscillation search (MINOS) was a particle physics experiment designed to study the phenomena of neutrino oscillations, first discovered by a Super-Kamiokande (Super-K) experiment in 1998. Neutrinos produced by the NuMI beamline at Fermilab near Chicago are observed at two detectors, one very close to where the beam is produced, and another much larger detector 735 km away in northern Minnesota.
T2K is a particle physics experiment studying the oscillations of the accelerator neutrinos. The experiment is conducted in Japan by the international cooperation of about 500 physicists and engineers with over 60 research institutions from several countries from Europe, Asia and North America and it is a recognized CERN experiment (RE13). T2K collected data within its first phase of operation from 2010 till 2021. The second phase of data taking (T2K-II) is expected to start in 2023 and last until commencement of the successor of T2K – the Hyper-Kamiokande experiment in 2027.
The Large Volume Detector (LVD) is a particle physics experiment situated in the Gran Sasso laboratory in Italy and is operated by the Italian Institute of Nuclear Physics (INFN). It has been in operation since June 1992, and is a member of the Supernova Early Warning System. Among other work, the detector should be able to detect neutrinos from our galaxy and possibly nearby galaxies. The LVD uses 840 scintillator counters around a large tank of hydrocarbons. The detector can detect both charged current and neutral current interactions.
Laboratori Nazionali del Gran Sasso (LNGS) is the largest underground research center in the world. Situated below Gran Sasso mountain in Italy, it is well known for particle physics research by the INFN. In addition to a surface portion of the laboratory, there are extensive underground facilities beneath the mountain. The nearest towns are L'Aquila and Teramo. The facility is located about 120 km from Rome.
CDHS was a neutrino experiment at CERN taking data from 1976 until 1984. The experiment was officially referred to as WA1. CDHS was a collaboration of groups from CERN, Dortmund, Heidelberg, Saclay and later Warsaw. The collaboration was led by Jack Steinberger. The experiment was designed to study deep inelastic neutrino interactions in iron.
The Oscillation Project with Emulsion-tRacking Apparatus (OPERA) was an instrument used in a scientific experiment for detecting tau neutrinos from muon neutrino oscillations. The experiment is a collaboration between CERN in Geneva, Switzerland, and the Laboratori Nazionali del Gran Sasso (LNGS) in Gran Sasso, Italy and uses the CERN Neutrinos to Gran Sasso (CNGS) neutrino beam.
Borexino is a deep underground particle physics experiment to study low energy (sub-MeV) solar neutrinos. The detector is the world's most radio-pure liquid scintillator calorimeter and is protected by 3,800 meters of water-equivalent depth. The scintillator is pseudocumene and PPO which is held in place by a thin nylon sphere. It is placed within a stainless steel sphere which holds the photomultiplier tubes (PMTs) used as signal detectors and is shielded by a water tank to protect it against external radiation. Outward pointing PMT's look for any outward facing light flashes to tag incoming cosmic muons that manage to penetrate the overburden of the mountain above. Neutrino energy can be determined through the number of photoelectrons measured in the PMT's. While the position can be determined by extrapolating the difference in arrival times of photons at PMT's throughout the chamber.
Double Chooz was a short-baseline neutrino oscillation experiment in Chooz, France. Its goal was to measure or set a limit on the θ13 mixing angle, a neutrino oscillation parameter responsible for changing electron neutrinos into other neutrinos. The experiment uses reactors of the Chooz Nuclear Power Plant as a neutrino source and measures the flux of neutrinos they receive. To accomplish this, Double Chooz has a set of two detectors situated 400 meters and 1050 meters from the reactors. Double Chooz was a successor to the Chooz experiment; one of its detectors occupies the same site as its predecessor. Until January 2015 all data has been collected using only the far detector. The near detector was completed in September 2014, after construction delays, and started taking data at the beginning of 2015. Both detectors stopped taking data in late December 2017.
Antonio Ereditato is an Italian physicist, currently Research Professor at the University of Chicago, associate researcher at Fermilab, Batavia, USA, and Emeritus professor at the University of Bern, Switzerland, where he has been Director of the Laboratory for High Energy Physics from 2006 to 2020. From 2021 to 2022 Ereditato has been Visiting Professor at the Yale University, USA. He carried out research activities in the field of experimental neutrino physics, of weak interactions and strong interactions with experiments conducted at CERN, in Japan, at Fermilab in United States and at the LNGS in Italy. Ereditato has accomplished several R&D studies on particle detectors: wire chambers, calorimeters, time projection chambers, nuclear emulsions, detectors for medical applications.
The CERN Neutrinos to Gran Sasso (CNGS) project was a physics project of the European Organization for Nuclear Research (CERN). The aim of the project was to analyse the hypothesis of neutrino oscillation by directing a beam of neutrinos from CERN's facilities to the detector of the OPERA experiment at the Gran Sasso National Laboratory (LNGS), located in the Gran Sasso mountain in Italy. The CNGS facility was housed in a tunnel which diverged from one of the SPS–LHC transfer tunnels, at the Franco–Swiss border near Geneva. It used the Super Proton Synchrotron (SPS) accelerator as a source of high-energy protons.
In 2011, the OPERA experiment mistakenly observed neutrinos appearing to travel faster than light. Even before the source of the error was discovered, the result was considered anomalous because speeds higher than that of light in vacuum are generally thought to violate special relativity, a cornerstone of the modern understanding of physics for over a century.
ICARUS is a physics experiment aimed at studying neutrinos. It was located at the Laboratori Nazionali del Gran Sasso (LNGS) where it started operations in 2010. After completion of its operations there, it was refurbished at CERN for re-use at Fermilab, in the same neutrino beam as the MiniBooNE, MicroBooNE and Short Baseline Near Detector (SBND) experiments. The ICARUS detector was then taken apart for transport and reassembled at Fermilab, where data collection is expected to begin in fall 2021.
A geoneutrino is a neutrino or antineutrino emitted in decay of radionuclide naturally occurring in the Earth. Neutrinos, the lightest of the known subatomic particles, lack measurable electromagnetic properties and interact only via the weak nuclear force when ignoring gravity. Matter is virtually transparent to neutrinos and consequently they travel, unimpeded, at near light speed through the Earth from their point of emission. Collectively, geoneutrinos carry integrated information about the abundances of their radioactive sources inside the Earth. A major objective of the emerging field of neutrino geophysics involves extracting geologically useful information from geoneutrino measurements. Analysts from the Borexino collaboration have been able to get to 53 events of neutrinos originating from the interior of the Earth.