Modern searches for Lorentz violation

Last updated
Measurements on light from gamma-ray bursts show that the speed of light does not vary with energy GRB080319B illustration NASA.jpg
Measurements on light from gamma-ray bursts show that the speed of light does not vary with energy

Modern searches for Lorentz violation are scientific studies that look for deviations from Lorentz invariance or symmetry, a set of fundamental frameworks that underpin modern science and fundamental physics in particular. These studies try to determine whether violations or exceptions might exist for well-known physical laws such as special relativity and CPT symmetry, as predicted by some variations of quantum gravity, string theory, and some alternatives to general relativity.

Contents

Lorentz violations concern the fundamental predictions of special relativity, such as the principle of relativity, the constancy of the speed of light in all inertial frames of reference, and time dilation, as well as the predictions of the standard model of particle physics. To assess and predict possible violations, test theories of special relativity and effective field theories (EFT) such as the Standard-Model Extension (SME) have been invented. These models introduce Lorentz and CPT violations through spontaneous symmetry breaking caused by hypothetical background fields, resulting in some sort of preferred frame effects. This could lead, for instance, to modifications of the dispersion relation, causing differences between the maximal attainable speed of matter and the speed of light.

Both terrestrial and astronomical experiments have been carried out, and new experimental techniques have been introduced. No Lorentz violations have been measured thus far, and exceptions in which positive results were reported have been refuted or lack further confirmations. For discussions of many experiments, see Mattingly (2005). [1] For a detailed list of results of recent experimental searches, see Kostelecký and Russell (2008–2013). [2] For a recent overview and history of Lorentz violating models, see Liberati (2013). [3]

Assessing Lorentz invariance violations

Early models assessing the possibility of slight deviations from Lorentz invariance have been published between the 1960s and the 1990s. [3] In addition, a series of test theories of special relativity and effective field theories (EFT) for the evaluation and assessment of many experiments have been developed, including:

However, the Standard-Model Extension (SME) in which Lorentz violating effects are introduced by spontaneous symmetry breaking, is used for most modern analyses of experimental results. It was introduced by Kostelecký and colleagues in 1997 and the following years, containing all possible Lorentz and CPT violating coefficients not violating gauge symmetry. [6] [7] It includes not only special relativity, but the standard model and general relativity as well. Models whose parameters can be related to SME and thus can be seen as special cases of it, include the older RMS and c2 models, [8] the Coleman-Glashow model confining the SME coefficients to dimension 4 operators and rotation invariance, [9] and the Gambini-Pullin model [10] or the Myers-Pospelov model [11] corresponding to dimension 5 or higher operators of SME. [12]

Speed of light

Terrestrial

Many terrestrial experiments have been conducted, mostly with optical resonators or in particle accelerators, by which deviations from the isotropy of the speed of light are tested. Anisotropy parameters are given, for instance, by the Robertson-Mansouri-Sexl test theory (RMS). This allows for distinction between the relevant orientation and velocity dependent parameters. In modern variants of the Michelson–Morley experiment, the dependence of light speed on the orientation of the apparatus and the relation of longitudinal and transverse lengths of bodies in motion is analyzed. Also modern variants of the Kennedy–Thorndike experiment, by which the dependence of light speed on the velocity of the apparatus and the relation of time dilation and length contraction is analyzed, have been conducted; the recently reached limit for Kennedy-Thorndike test yields 7 10−12. [13] The current precision, by which an anisotropy of the speed of light can be excluded, is at the 10−17 level. This is related to the relative velocity between the Solar System and the rest frame of the cosmic microwave background radiation of ~368 km/s (see also Resonator Michelson–Morley experiments).

In addition, the Standard-Model Extension (SME) can be used to obtain a larger number of isotropy coefficients in the photon sector. It uses the even- and odd-parity coefficients (3×3 matrices) , and . [8] They can be interpreted as follows: represent anisotropic shifts in the two-way (forward and backwards) speed of light, represent anisotropic differences in the one-way speed of counterpropagating beams along an axis, [14] [15] and represent isotropic (orientation-independent) shifts in the one-way phase velocity of light. [16] It was shown that such variations in the speed of light can be removed by suitable coordinate transformations and field redefinitions, though the corresponding Lorentz violations cannot be removed, because such redefinitions only transfer those violations from the photon sector to the matter sector of SME. [8] While ordinary symmetric optical resonators are suitable for testing even-parity effects and provide only tiny constraints on odd-parity effects, also asymmetric resonators have been built for the detection of odd-parity effects. [16] For additional coefficients in the photon sector leading to birefringence of light in vacuum, which cannot be redefined as the other photon effects, see § Vacuum birefringence .

Another type of test of the related one-way light speed isotropy in combination with the electron sector of the SME was conducted by Bocquet et al. (2010). [17] They searched for fluctuations in the 3-momentum of photons during Earth's rotation, by measuring the Compton scattering of ultrarelativistic electrons on monochromatic laser photons in the frame of the cosmic microwave background radiation, as originally suggested by Vahe Gurzadyan and Amur Margarian [18] (for details on that 'Compton Edge' method and analysis see, [19] discussion e.g. [20] ).

AuthorYearRMSSME
OrientationVelocity
Michimura et al. [21] 2013(0.7±1)×10−14(−0.4±0.9)×10−10
Baynes et al. [22] 2012(3±11)×10−10
Baynes et al. [23] 2011(0.7±1.4)×10−12(3.4±6.2)×10−9
Hohensee et al. [14] 2010(0.8±0.6)×10−16(−1.5±1.2)×10−12(−1.50±0.74)×10−8
Bocquet et al. [17] 2010≤1.6×10−14 [24]
Herrmann et al. [25] 2009(4±8)×10−12(−0.31±0.73)×10−17(−0.14±0.78)×10−13
Eisele et al. [26] 2009(−1.6±6±1.2)×10−12(0.0±1.0±0.3)×10−17(1.5±1.5±0.2)×10−13
Tobar et al. [27] 2009(−4.8±3.7)×10−8
Tobar et al. [28] 2009(−0.3±3)×10−7
Müller et al. [29] 2007(7.7±4.0)×10−16(1.7±2.0)×10−12
Carone et al. [30] 2006≲3×10−8 [31]
Stanwix et al. [32] 2006(9.4±8.1)×10−11(−6.9±2.2)×10−16(−0.9±2.6)×10−12
Herrmann et al. [33] 2005(−2.1±1.9)×10−10(−3.1±2.5)×10−16(−2.5±5.1)×10−12
Stanwix et al. [34] 2005(−0.9±2.0)×10−10(−0.63±0.43)×10−15(0.20±0.21)×10−11
Antonini et al. [35] 2005(+0.5±3±0.7)×10−10(−2.0±0.2)×10−14
Wolf et al. [36] 2004(−5.7±2.3)×10−15(−1.8±1.5)×10−11
Wolf et al. [37] 2004(+1.2±2.2)×10−9(3.7±3.0)×10−7
Müller et al. [38] 2003(+2.2±1.5)×10−9(1.7±2.6)×10−15(14±14)×10−11
Lipa et al. [39] 2003(1.4±1.4)×10−1310−9
Wolf et al. [40] 2003(+1.5±4.2)×10−9
Braxmaier et al. [41] 2002(1.9±2.1)×10−5
Hils and Hall [42] 19906.6×10−5
Brillet and Hall [43] 1979≲5×10−910−15

Solar System

Besides terrestrial tests also astrometric tests using Lunar Laser Ranging (LLR), i.e. sending laser signals from Earth to Moon and back, have been conducted. They are ordinarily used to test general relativity and are evaluated using the Parameterized post-Newtonian formalism. [44] However, since these measurements are based on the assumption that the speed of light is constant, they can also be used as tests of special relativity by analyzing potential distance and orbit oscillations. For instance, Zoltán Lajos Bay and White (1981) demonstrated the empirical foundations of the Lorentz group and thus special relativity by analyzing the planetary radar and LLR data. [45]

In addition to the terrestrial Kennedy–Thorndike experiments mentioned above, Müller & Soffel (1995) [46] and Müller et al. (1999) [47] tested the RMS velocity dependence parameter by searching for anomalous distance oscillations using LLR. Since time dilation is already confirmed to high precision, a positive result would prove that light speed depends on the observer's velocity and length contraction is direction dependent (like in the other Kennedy–Thorndike experiments). However, no anomalous distance oscillations have been observed, with a RMS velocity dependence limit of , [47] comparable to that of Hils and Hall (1990, see table above on the right).

Vacuum dispersion

Another effect often discussed in connection with quantum gravity (QG) is the possibility of dispersion of light in vacuum (i.e. the dependence of light speed on photon energy), due to Lorentz-violating dispersion relations. This effect should be strong at energy levels comparable to, or beyond the Planck energy GeV, while being extraordinarily weak at energies accessible in the laboratory or observed in astrophysical objects. In an attempt to observe a weak dependence of speed on energy, light from distant astrophysical sources such as gamma ray bursts and distant galaxies has been examined in many experiments. Especially the Fermi-LAT group was able show that no energy dependence and thus no observable Lorentz violation occurs in the photon sector even beyond the Planck energy, [48] which excludes a large class of Lorentz-violating quantum gravity models.

NameYearQG Bounds (GeV)
95% C.L.99% C.L.
Vasileiou et al. [49] 2013>7.6 × EPl
Nemiroff et al. [50] 2012>525 × EPl
Fermi-LAT-GBM [48] 2009>3.42 × EPl>1.19 × EPl
H.E.S.S. [51] 2008≥7.2×1017
MAGIC [52] 2007≥0.21×1018
Ellis et al. [53] [54] 2007≥1.4×1016
Lamon et al. [55] 2007≥3.2×1011
Martinez et al. [56] 2006≥0.66×1017
Boggs et al. [57] 2004≥1.8×1017
Ellis et al. [58] 2003≥6.9×1015
Ellis et al. [59] 20001015
Kaaret [60] 1999>1.8×1015
Schaefer [61] 1999≥2.7×1016
Biller [62] 1999>4×1016

Vacuum birefringence

Lorentz violating dispersion relations due to the presence of an anisotropic space might also lead to vacuum birefringence and parity violations. For instance, the polarization plane of photons might rotate due to velocity differences between left- and right-handed photons. In particular, gamma ray bursts, galactic radiation, and the cosmic microwave background radiation are examined. The SME coefficients and for Lorentz violation are given, 3 and 5 denote the mass dimensions employed. The latter corresponds to in the EFT of Meyers and Pospelov [11] by , being the Planck mass. [63]

NameYearSME boundsEFT bound,
(GeV) (GeV−1)
Götz et al. [64] 2013≤5.9×10−35≤3.4×10−16
Toma et al. [65] 2012≤1.4×10−34≤8×10−16
Laurent et al. [66] 2011≤1.9×10−33≤1.1×10−14
Stecker [63] 2011≤4.2×10−34≤2.4×10−15
Kostelecký et al. [12] 2009≤1×10−32≤9×10−14
QUaD [67] 2008≤2×10−43
Kostelecký et al. [68] 2008=(2.3±5.4)×10−43
Maccione et al. [69] 2008≤1.5×10−28≤9×10−10
Komatsu et al. [70] 2008=(1.2±2.2)×10−43 [12]
Kahniashvili et al. [71] 2008=(2.6±1.9)×10−43 [12]
Cabella et al. [72] 2007=(2.5±3.0)×10−43 [12]
Fan et al. [73] 2007≤3.4×10−26≤2×10−7 [63]
Feng et al. [74] 2006=(6.0±4.0)×10−43 [12]
Gleiser et al. [75] 2001≤8.7×10−23≤4×10−4 [63]
Carroll et al. [76] 1990≤2×10−42

Maximal attainable speed

Threshold constraints

Lorentz violations could lead to differences between the speed of light and the limiting or maximal attainable speed (MAS) of any particle, whereas in special relativity the speeds should be the same. One possibility is to investigate otherwise forbidden effects at threshold energy in connection with particles having a charge structure (protons, electrons, neutrinos). This is because the dispersion relation is assumed to be modified in Lorentz violating EFT models such as SME. Depending on which of these particles travels faster or slower than the speed of light, effects such as the following can occur: [77] [78]

Since astronomic measurements also contain additional assumptions – like the unknown conditions at the emission or along the path traversed by the particles, or the nature of the particles –, terrestrial measurements provide results of greater clarity, even though the bounds are wider (the following bounds describe maximal deviations between the speed of light and the limiting velocity of matter):

NameYearBoundsParticleLocation
Photon decayCherenkovSynchrotronGZK
Stecker [79] 2014≤5×10−21ElectronAstronomical
Stecker & Scully [80] 2009≤4.5×10−23 UHECR Astronomical
Altschul [81] 2009≤5×10−15ElectronTerrestrial
Hohensee et al. [78] 2009≤−5.8×10−12≤1.2×10−11ElectronTerrestrial
Bi et al. [82] 2008≤3×10−23UHECRAstronomical
Klinkhamer & Schreck [83] 2008≤−9×10−16≤6×10−20UHECRAstronomical
Klinkhamer & Risse [84] 2007≤2×10−19UHECRAstronomical
Kaufhold et al. [85] 200710−17UHECRAstronomical
Altschul [86] 2005≤6×10−20ElectronAstronomical
Gagnon et al. [87] 2004≤−2×10−21≤5×10−24UHECRAstronomical
Jacobson et al. [88] 2003≤−2×10−16≤5×10−20ElectronAstronomical
Coleman & Glashow [9] 1997≤−1.5×10−15≤5×10−23UHECRAstronomical

Clock comparison and spin coupling

By this kind of spectroscopy experiments – sometimes called Hughes–Drever experiments as well – violations of Lorentz invariance in the interactions of protons and neutrons are tested by studying the energy levels of those nucleons in order to find anisotropies in their frequencies ("clocks"). Using spin-polarized torsion balances, also anisotropies with respect to electrons can be examined. Methods used mostly focus on vector spin interactions and tensor interactions, [89] and are often described in CPT odd/even SME terms (in particular parameters of bμ and cμν). [90] Such experiments are currently the most sensitive terrestrial ones, because the precision by which Lorentz violations can be excluded lies at the 10−33 GeV level.

These tests can be used to constrain deviations between the maximal attainable speed of matter and the speed of light, [5] in particular with respect to the parameters of cμν that are also used in the evaluations of the threshold effects mentioned above. [81]

AuthorYearSME boundsParameters
ProtonNeutronElectron
Allmendinger et al. [91] 2013<6.7×10−34bμ
Hohensee et al. [92] 2013(−9.0±11)×10−17cμν
Peck et al. [93] 2012<4×10−30<3.7×10−31bμ
Smiciklas et al. [89] 2011(4.8±4.4)×10−32cμν
Gemmel et al. [94] 2010<3.7×10−32bμ
Brown et al. [95] 2010<6×10−32<3.7×10−33bμ
Altarev et al. [96] 2009<2×10−29bμ
Heckel et al. [97] 2008(4.0±3.3)×10−31bμ
Wolf et al. [98] 2006(−1.8±2.8)×10−25cμν
Canè et al. [99] 2004(8.0±9.5)×10−32bμ
Heckel et al. [100] 2006<5×10−30bμ
Humphrey et al. [101] 2003<2×10−27bμ
Hou et al. [102] 2003(1.8±5.3)×10−30bμ
Phillips et al. [103] 2001<2×10−27bμ
Bear et al. [104] 2000(4.0±3.3)×10−31bμ

Time dilation

The classic time dilation experiments such as the Ives–Stilwell experiment, the Moessbauer rotor experiments, and the time dilation of moving particles, have been enhanced by modernized equipment. For example, the Doppler shift of lithium ions traveling at high speeds is evaluated by using saturated spectroscopy in heavy ion storage rings. For more information, see Modern Ives–Stilwell experiments.

The current precision with which time dilation is measured (using the RMS test theory), is at the ~10−8 level. It was shown, that Ives-Stilwell type experiments are also sensitive to the isotropic light speed coefficient of the SME, as introduced above. [16] Chou et al. (2010) even managed to measure a frequency shift of ~10−16 due to time dilation, namely at everyday speeds such as 36 km/h. [105]

AuthorYearVelocityMaximum deviation
from time dilation
Fourth order
RMS bounds
Novotny et al. [106] 20090.34c≤1.3×10−6≤1.2×10−5
Reinhardt et al. [107] 20070.064c≤8.4×10−8
Saathoff et al. [108] 20030.064c≤2.2×10−7
Grieser et al. [109] 19940.064c≤1×10−6≤2.7×10−4

CPT and antimatter tests

Another fundamental symmetry of nature is CPT symmetry. It was shown that CPT violations lead to Lorentz violations in quantum field theory (even though there are nonlocal exceptions). [110] [111] CPT symmetry requires, for instance, the equality of mass, and equality of decay rates between matter and antimatter.

Modern tests by which CPT symmetry has been confirmed are mainly conducted in the neutral meson sector. In large particle accelerators, direct measurements of mass differences between top- and antitop-quarks have been conducted as well.

Neutral B mesons
AuthorYear
LHCb [112] 2016
BaBar [113] 2016
D0 [114] 2015
Belle [115] 2012
Kostelecký et al. [116] 2010
BaBar [117] 2008
BaBar [118] 2006
BaBar [119] 2004
Belle [120] 2003
Neutral D mesons
AuthorYear
FOCUS [121] 2003
Neutral kaons
AuthorYear
KTeV [122] 2011
KLOE [123] 2006
CPLEAR [124] 2003
KTeV [125] 2003
NA31 [126] 1990
Top- and antitop quarks
AuthorYear
CDF [127] 2012
CMS [128] 2012
D0 [129] 2011
CDF [130] 2011
D0 [131] 2009

Using SME, also additional consequences of CPT violation in the neutral meson sector can be formulated. [116] Other SME related CPT tests have been performed as well:

Other particles and interactions

Third generation particles have been examined for potential Lorentz violations using SME. For instance, Altschul (2007) placed upper limits on Lorentz violation of the tau of 10−8, by searching for anomalous absorption of high energy astrophysical radiation. [136] In the BaBar experiment (2007), [117] the D0 experiment (2015), [114] and the LHCb experiment (2016), [112] searches have been made for sidereal variations during Earth's rotation using B mesons (thus bottom quarks) and their antiparticles. No Lorentz and CPT violating signal were found with upper limits in the range 10−15 − 10−14 GeV. Also top quark pairs have been examined in the D0 experiment (2012). They showed that the cross section production of these pairs doesn't depend on sidereal time during Earth's rotation. [137]

Lorentz violation bounds on Bhabha scattering have been given by Charneski et al. (2012). [138] They showed that differential cross sections for the vector and axial couplings in QED become direction dependent in the presence of Lorentz violation. They found no indication of such an effect, placing upper limits on Lorentz violations of .

Gravitation

The influence of Lorentz violation on gravitational fields and thus general relativity was analyzed as well. The standard framework for such investigations is the Parameterized post-Newtonian formalism (PPN), in which Lorentz violating preferred frame effects are described by the parameters (see the PPN article on observational bounds on these parameters). Lorentz violations are also discussed in relation to Alternatives to general relativity such as Loop quantum gravity, Emergent gravity, Einstein aether theory or Hořava–Lifshitz gravity.

Also SME is suitable to analyze Lorentz violations in the gravitational sector. Bailey and Kostelecky (2006) constrained Lorentz violations down to by analyzing the perihelion shifts of Mercury and Earth, and down to in relation to solar spin precession. [139] Battat et al. (2007) examined Lunar Laser Ranging data and found no oscillatory perturbations in the lunar orbit. Their strongest SME bound excluding Lorentz violation was . [140] Iorio (2012) obtained bounds at the level by examining Keplerian orbital elements of a test particle acted upon by Lorentz-violating gravitomagnetic accelerations. [141] Xie (2012) analyzed the advance of periastron of binary pulsars, setting limits on Lorentz violation at the level. [142]

Neutrino tests

Neutrino oscillations

Although neutrino oscillations have been experimentally confirmed, the theoretical foundations are still controversial, as it can be seen in the discussion related to sterile neutrinos. This makes predictions of possible Lorentz violations very complicated. It is generally assumed that neutrino oscillations require a certain finite mass. However, oscillations could also occur as a consequence of Lorentz violations, so there are speculations as to how much those violations contribute to the mass of the neutrinos. [143]

Additionally, a series of investigations have been published in which a sidereal dependence of the occurrence of neutrino oscillations was tested, which could arise when there were a preferred background field. This, possible CPT violations, and other coefficients of Lorentz violations in the framework of SME, have been tested. Here, some of the achieved GeV bounds for the validity of Lorentz invariance are stated:

NameYearSME bounds (GeV)
Double Chooz [144] 2012≤10−20
MINOS [145] 2012≤10−23
MiniBooNE [146] 2012≤10−20
IceCube [147] 2010≤10−23
MINOS [148] 2010≤10−23
MINOS [149] 2008≤10−20
LSND [150] 2005≤10−19

Neutrino speed

Since the discovery of neutrino oscillations, it is assumed that their speed is slightly below the speed of light. Direct velocity measurements indicated an upper limit for relative speed differences between light and neutrinos of , see measurements of neutrino speed.

Also indirect constraints on neutrino velocity, on the basis of effective field theories such as SME, can be achieved by searching for threshold effects such as Vacuum Cherenkov radiation. For example, neutrinos should exhibit Bremsstrahlung in the form of electron-positron pair production. [151] Another possibility in the same framework is the investigation of the decay of pions into muons and neutrinos. Superluminal neutrinos would considerably delay those decay processes. The absence of those effects indicate tight limits for velocity differences between light and neutrinos. [152]

Velocity differences between neutrino flavors can be constrained as well. A comparison between muon- and electron-neutrinos by Coleman & Glashow (1998) gave a negative result, with bounds <6×10−22. [9]

NameYearEnergySME bounds for (v − c)/c
Vacuum CherenkovPion decay
Stecker et al. [79] 20141 PeV<5.6×10−19
Borriello et al. [153] 20131 PeV10−18
Cowsik et al. [154] 2012100 TeV10−13
Huo et al. [155] 2012400 TeV<7.8×10−12
ICARUS [156] 201117 GeV<2.5×10−8
Cowsik et al. [157] 2011400 TeV10−12
Bi et al. [158] 2011400 TeV10−12
Cohen/Glashow [159] 2011100 TeV<1.7×10−11

Reports of alleged Lorentz violations

Open reports

LSND, MiniBooNE

In 2001, the LSND experiment observed a 3.8σ excess of antineutrino interactions in neutrino oscillations, which contradicts the standard model. [160] First results of the more recent MiniBooNE experiment appeared to exclude this data above an energy scale of 450 MeV, but they had checked neutrino interactions, not antineutrino ones. [161] In 2008, however, they reported an excess of electron-like neutrino events between 200 and 475 MeV. [162] And in 2010, when carried out with antineutrinos (as in LSND), the result was in agreement with the LSND result, that is, an excess at the energy scale from 450 to 1250 MeV was observed. [163] [164] Whether those anomalies can be explained by sterile neutrinos, or whether they indicate Lorentz violations, is still discussed and subject to further theoretical and experimental researches. [165]

Solved reports

In 2011 the OPERA Collaboration published (in a non-peer reviewed arXiv preprint) the results of neutrino measurements, according to which neutrinos were traveling slightly faster than light. [166] The neutrinos apparently arrived early by ~60 ns. The standard deviation was 6σ, clearly beyond the 5σ limit necessary for a significant result. However, in 2012 it was found that this result was due to measurement errors. The result was consistent with the speed of light; [167] see Faster-than-light neutrino anomaly.

In 2010, MINOS reported differences between the disappearance (and thus the masses) of neutrinos and antineutrinos at the 2.3 sigma level. This would violate CPT symmetry and Lorentz symmetry. [168] [169] [170] However, in 2011 MINOS updated their antineutrino results; after evaluating additional data, they reported that the difference is not as great as initially thought. [171] In 2012, they published a paper in which they reported that the difference is now removed. [172]

In 2007, the MAGIC Collaboration published a paper, in which they claimed a possible energy dependence of the speed of photons from the galaxy Markarian 501. They admitted, that also a possible energy-dependent emission effect could have cause this result as well. [52] [173] However, the MAGIC result was superseded by the substantially more precise measurements of the Fermi-LAT group, which couldn't find any effect even beyond the Planck energy. [48] For details, see section Dispersion.

In 1997, Nodland & Ralston claimed to have found a rotation of the polarization plane of light coming from distant radio galaxies. This would indicate an anisotropy of space. [174] [175] [176] This attracted some interest in the media. However, some criticisms immediately appeared, which disputed the interpretation of the data, and who alluded to errors in the publication. [177] [178] [179] [180] [181] [182] [183] More recent studies have not found any evidence for this effect (see section on Birefringence).

See also

Related Research Articles

Faster-than-light travel and communication are the conjectural propagation of matter or information faster than the speed of light. The special theory of relativity implies that only particles with zero rest mass may travel at the speed of light, and that nothing may travel faster.

A tachyon or tachyonic particle is a hypothetical particle that always travels faster than light. Physicists believe that faster-than-light particles cannot exist because they are inconsistent with the known laws of physics. If such particles did exist they could be used to send signals faster than light and into the past. According to the theory of relativity this would violate causality, leading to logical paradoxes such as the grandfather paradox. Tachyons would exhibit the unusual property of increasing in speed as their energy decreases, and would require infinite energy to slow to the speed of light. No verifiable experimental evidence for the existence of such particles has been found.

<span class="mw-page-title-main">Timeline of gravitational physics and relativity</span>

The following is a timeline of gravitational physics and general relativity.

Charge, parity, and time reversal symmetry is a fundamental symmetry of physical laws under the simultaneous transformations of charge conjugation (C), parity transformation (P), and time reversal (T). CPT is the only combination of C, P, and T that is observed to be an exact symmetry of nature at the fundamental level. The CPT theorem says that CPT symmetry holds for all physical phenomena, or more precisely, that any Lorentz invariant local quantum field theory with a Hermitian Hamiltonian must have CPT symmetry.

Doubly special relativity (DSR) – also called deformed special relativity or, by some, extra-special relativity – is a modified theory of special relativity in which there is not only an observer-independent maximum velocity, but also an observer-independent maximum energy scale and/or a minimum length scale. This contrasts with other Lorentz-violating theories, such as the Standard-Model Extension, where Lorentz invariance is instead broken by the presence of a preferred frame. The main motivation for this theory is that the Planck energy should be the scale where as yet unknown quantum gravity effects become important and, due to invariance of physical laws, this scale should remain fixed in all inertial frames.

The Shapiro time delay effect, or gravitational time delay effect, is one of the four classic Solar System tests of general relativity. Radar signals passing near a massive object take slightly longer to travel to a target and longer to return than they would if the mass of the object were not present. The time delay is caused by time dilation, which increases the time it takes light to travel a given distance from the perspective of an outside observer. In a 1964 article entitled Fourth Test of General Relativity, Irwin Shapiro wrote:

Because, according to the general theory, the speed of a light wave depends on the strength of the gravitational potential along its path, these time delays should thereby be increased by almost 2×10−4 sec when the radar pulses pass near the sun. Such a change, equivalent to 60 km in distance, could now be measured over the required path length to within about 5 to 10% with presently obtainable equipment.

<span class="mw-page-title-main">MiniBooNE</span> Neutrino physics experiment

MiniBooNE is a Cherenkov detector experiment at Fermilab designed to observe neutrino oscillations. A neutrino beam consisting primarily of muon neutrinos is directed at a detector filled with 800 tons of mineral oil and lined with 1,280 photomultiplier tubes. An excess of electron neutrino events in the detector would support the neutrino oscillation interpretation of the LSND result.

<span class="mw-page-title-main">MINOS</span> Particle physics experiment

Main injector neutrino oscillation search (MINOS) was a particle physics experiment designed to study the phenomena of neutrino oscillations, first discovered by a Super-Kamiokande (Super-K) experiment in 1998. Neutrinos produced by the NuMI beamline at Fermilab near Chicago are observed at two detectors, one very close to where the beam is produced, and another much larger detector 735 km away in northern Minnesota.

<span class="mw-page-title-main">Physics beyond the Standard Model</span> Theories trying to extend known physics

Physics beyond the Standard Model (BSM) refers to the theoretical developments needed to explain the deficiencies of the Standard Model, such as the inability to explain the fundamental parameters of the standard model, the strong CP problem, neutrino oscillations, matter–antimatter asymmetry, and the nature of dark matter and dark energy. Another problem lies within the mathematical framework of the Standard Model itself: the Standard Model is inconsistent with that of general relativity, and one or both theories break down under certain conditions, such as spacetime singularities like the Big Bang and black hole event horizons.

<span class="mw-page-title-main">MINERνA</span> Neutrino scattering experiment at Fermilab in Illinois, USA

Main Injector Experiment for ν-A, or MINERνA, is a neutrino scattering experiment which uses the NuMI beamline at Fermilab. MINERνA seeks to measure low energy neutrino interactions both in support of neutrino oscillation experiments and also to study the strong dynamics of the nucleon and nucleus that affect these interactions.

Test theories of special relativity give a mathematical framework for analyzing results of experiments to verify special relativity.

Hořava–Lifshitz gravity is a theory of quantum gravity proposed by Petr Hořava in 2009. It solves the problem of different concepts of time in quantum field theory and general relativity by treating the quantum concept as the more fundamental so that space and time are not equivalent (anisotropic) at high energy level. The relativistic concept of time with its Lorentz invariance emerges at large distances. The theory relies on the theory of foliations to produce its causal structure. It is related to topologically massive gravity and the Cotton tensor. It is a possible UV completion of general relativity. Also, the speed of light goes to infinity at high energies. The novelty of this approach, compared to previous approaches to quantum gravity such as loop quantum gravity, is that it uses concepts from condensed matter physics such as quantum critical phenomena. Hořava's initial formulation was found to have side-effects such as predicting very different results for a spherical Sun compared to a slightly non-spherical Sun, so others have modified the theory. Inconsistencies remain, though progress was made on the theory. Nevertheless, observations of gravitational waves emitted by the neutron-star merger GW170817 contravene predictions made by this model of gravity. Some have revised the theory to account for this.

Standard-Model Extension (SME) is an effective field theory that contains the Standard Model, general relativity, and all possible operators that break Lorentz symmetry. Violations of this fundamental symmetry can be studied within this general framework. CPT violation implies the breaking of Lorentz symmetry, and the SME includes operators that both break and preserve CPT symmetry.

High-precision experiments could reveal small previously unseen differences between the behavior of matter and antimatter. This prospect is appealing to physicists because it may show that nature is not Lorentz symmetric.

Lorentz-violating neutrino oscillation refers to the quantum phenomenon of neutrino oscillations described in a framework that allows the breakdown of Lorentz invariance. Today, neutrino oscillation or change of one type of neutrino into another is an experimentally verified fact; however, the details of the underlying theory responsible for these processes remain an open issue and an active field of study. The conventional model of neutrino oscillations assumes that neutrinos are massive, which provides a successful description of a wide variety of experiments; however, there are a few oscillation signals that cannot be accommodated within this model, which motivates the study of other descriptions. In a theory with Lorentz violation, neutrinos can oscillate with and without masses and many other novel effects described below appear. The generalization of the theory by incorporating Lorentz violation has shown to provide alternative scenarios to explain all the established experimental data through the construction of global models.

<span class="mw-page-title-main">Hughes–Drever experiment</span>

Hughes–Drever experiments are spectroscopic tests of the isotropy of mass and space. Although originally conceived of as a test of Mach's principle, they are now understood to be an important test of Lorentz invariance. As in Michelson–Morley experiments, the existence of a preferred frame of reference or other deviations from Lorentz invariance can be tested, which also affects the validity of the equivalence principle. Thus these experiments concern fundamental aspects of both special and general relativity. Unlike Michelson–Morley type experiments, Hughes–Drever experiments test the isotropy of the interactions of matter itself, that is, of protons, neutrons, and electrons. The accuracy achieved makes this kind of experiment one of the most accurate confirmations of relativity.

Measurements of neutrino speed have been conducted as tests of special relativity and for the determination of the mass of neutrinos. Astronomical searches investigate whether light and neutrinos emitted simultaneously from a distant source are arriving simultaneously on Earth. Terrestrial searches include time of flight measurements using synchronized clocks, and direct comparison of neutrino speed with the speed of other particles.

Searches for Lorentz violation involving photons provide one possible test of relativity. Examples range from modern versions of the classic Michelson–Morley experiment that utilize highly stable electromagnetic resonant cavities to searches for tiny deviations from c in the speed of light emitted by distant astrophysical sources. Due to the extreme distances involved, astrophysical studies have achieved sensitivities on the order of parts in 1038.

<span class="mw-page-title-main">Kam-Biu Luk</span> American physicist

Kam-Biu Luk is a professor of physics, with a focus on particle physics, at UC Berkeley and a senior faculty scientist in the Lawrence Berkeley National Laboratory's physics division. Luk has conducted research on neutrino oscillation and CP violation. Luk and his collaborator Yifang Wang were awarded the 2014 Panofsky Prize "for their leadership of the Daya Bay experiment, which produced the first definitive measurement of θ13 angle of the neutrino mixing matrix." His work on neutrino oscillation also received 2016 Breakthrough Prize in Fundamental Physics shared with other teams. He also received a Doctor of Science honoris causa from the Hong Kong University of Science and Technology in 2016. Luk is a fellow of the American Physical Society, and the American Academy of Arts and Sciences.

Blayne Ryan Heckel is an American experimental physicist whose research involved precision measurements in atomic physics and gravitational physics. He is a professor emeritus at the University of Washington in Seattle.

References

  1. Mattingly, David (2005). "Modern Tests of Lorentz Invariance". Living Rev. Relativ. 8 (5): 5. arXiv: gr-qc/0502097 . Bibcode:2005LRR.....8....5M. doi: 10.12942/lrr-2005-5 . PMC   5253993 . PMID   28163649.
  2. Kostelecky, V.A.; Russell, N. (2011). "Data tables for Lorentz and CPT violation". Reviews of Modern Physics. 83 (1): 11–31. arXiv: 0801.0287 . Bibcode:2011RvMP...83...11K. doi:10.1103/RevModPhys.83.11. S2CID   3236027.
  3. 1 2 Liberati, S. (2013). "Tests of Lorentz invariance: a 2013 update". Classical and Quantum Gravity. 30 (13): 133001. arXiv: 1304.5795 . Bibcode:2013CQGra..30m3001L. doi:10.1088/0264-9381/30/13/133001. S2CID   119261793.
  4. Haugan, Mark P.; Will, Clifford M. (1987). "Modern tests of special relativity". Physics Today. 40 (5): 69–86. Bibcode:1987PhT....40e..69H. doi:10.1063/1.881074.
  5. 1 2 Will, C.M. (2006). "The Confrontation between General Relativity and Experiment". Living Rev. Relativ. 9 (1): 12. arXiv: gr-qc/0510072 . Bibcode:2006LRR.....9....3W. doi: 10.12942/lrr-2006-3 . PMC   5256066 . PMID   28179873.
  6. Colladay, Don; Kostelecký, V. Alan (1997). "CPT violation and the standard model". Physical Review D. 55 (11): 6760–6774. arXiv: hep-ph/9703464 . Bibcode:1997PhRvD..55.6760C. doi:10.1103/PhysRevD.55.6760. S2CID   7651433.
  7. Colladay, Don; Kostelecký, V. Alan (1998). "Lorentz-violating extension of the standard model". Physical Review D. 58 (11): 116002. arXiv: hep-ph/9809521 . Bibcode:1998PhRvD..58k6002C. doi:10.1103/PhysRevD.58.116002. S2CID   4013391.
  8. 1 2 3 Kostelecký, V. Alan; Mewes, Matthew (2002). "Signals for Lorentz violation in electrodynamics". Physical Review D. 66 (5): 056005. arXiv: hep-ph/0205211 . Bibcode:2002PhRvD..66e6005K. doi:10.1103/PhysRevD.66.056005. S2CID   21309077.
  9. 1 2 3 Coleman, Sidney; Glashow, Sheldon L. (1999). "High-energy tests of Lorentz invariance". Physical Review D. 59 (11): 116008. arXiv: hep-ph/9812418 . Bibcode:1999PhRvD..59k6008C. doi:10.1103/PhysRevD.59.116008. S2CID   1273409.
  10. Gambini, Rodolfo; Pullin, Jorge (1999). "Nonstandard optics from quantum space-time". Physical Review D. 59 (12): 124021. arXiv: gr-qc/9809038 . Bibcode:1999PhRvD..59l4021G. doi:10.1103/PhysRevD.59.124021. S2CID   32965963.
  11. 1 2 Myers, Robert C.; Pospelov, Maxim (2003). "Ultraviolet Modifications of Dispersion Relations in Effective Field Theory". Physical Review Letters. 90 (21): 211601. arXiv: hep-ph/0301124 . Bibcode:2003PhRvL..90u1601M. doi:10.1103/PhysRevLett.90.211601. PMID   12786546. S2CID   37525861.
  12. 1 2 3 4 5 6 Kostelecký, V. Alan; Mewes, Matthew (2009). "Electrodynamics with Lorentz-violating operators of arbitrary dimension". Physical Review D. 80 (1): 015020. arXiv: 0905.0031 . Bibcode:2009PhRvD..80a5020K. doi:10.1103/PhysRevD.80.015020. S2CID   119241509.
  13. Gurzadyan, V.G.; Margaryan, A.T. (2018). "The light speed versus the observer: the Kennedy–Thorndike test from GRAAL-ESRF". Eur. Phys. J. C. 78 (8): 607. arXiv: 1807.08551 . Bibcode:2018EPJC...78..607G. doi:10.1140/epjc/s10052-018-6080-x. S2CID   119374401.
  14. 1 2 Hohensee; et al. (2010). "Improved constraints on isotropic shift and anisotropies of the speed of light using rotating cryogenic sapphire oscillators". Physical Review D. 82 (7): 076001. arXiv: 1006.1376 . Bibcode:2010PhRvD..82g6001H. doi:10.1103/PhysRevD.82.076001. S2CID   2612817.
  15. Hohensee; et al. (2010). "Covariant Quantization of Lorentz-Violating Electromagnetism". arXiv: 1210.2683 [quant-ph].; Standalone version of work included in the Ph.D. Thesis of M.A. Hohensee.
  16. 1 2 3 Tobar; et al. (2005). "New methods of testing Lorentz violation in electrodynamics". Physical Review D. 71 (2): 025004. arXiv: hep-ph/0408006 . Bibcode:2005PhRvD..71b5004T. doi:10.1103/PhysRevD.71.025004.
  17. 1 2 Bocquet; et al. (2010). "Limits on Light-Speed Anisotropies from Compton Scattering of High-Energy Electrons". Physical Review Letters. 104 (24): 24160. arXiv: 1005.5230 . Bibcode:2010PhRvL.104x1601B. doi:10.1103/PhysRevLett.104.241601. PMID   20867292. S2CID   20890367.
  18. Gurzadyan, V. G.; Margarian, A. T. (1996). "Inverse Compton testing of fundamental physics and the cosmic background radiation". Physica Scripta. 53 (5): 513–515. Bibcode:1996PhyS...53..513G. doi:10.1088/0031-8949/53/5/001. S2CID   250775347.
  19. Gurzadyan, V. G.; et al. (2012). "A new limit on the light speed isotropy from the GRAAL experiment at the ESRF". Proc. 12th M.Grossmann Meeting on General Relativity. B: 1495–1499. arXiv: 1004.2867 . Bibcode:2012mgm..conf.1495G. doi:10.1142/9789814374552_0255. ISBN   978-981-4374-51-4. S2CID   119219661.
  20. Lingli Zhou; Bo-Qiang Ma (2012). "A theoretical diagnosis on light speed anisotropy from GRAAL experiment". Astroparticle Physics. 36 (1): 37–41. arXiv: 1009.1675 . Bibcode:2012APh....36...37Z. doi:10.1016/j.astropartphys.2012.04.015. S2CID   118625197.
  21. Michimura; et al. (2013). "New Limit on Lorentz Violation Using a Double-Pass Optical Ring Cavity". Physical Review Letters. 110 (20): 200401. arXiv: 1303.6709 . Bibcode:2013PhRvL.110t0401M. doi:10.1103/PhysRevLett.110.200401. PMID   25167384. S2CID   34643297.
  22. Baynes; et al. (2012). "Oscillating Test of the Isotropic Shift of the Speed of Light". Physical Review Letters. 108 (26): 260801. Bibcode:2012PhRvL.108z0801B. doi:10.1103/PhysRevLett.108.260801. PMID   23004951.
  23. Baynes; et al. (2011). "Testing Lorentz invariance using an odd-parity asymmetric optical resonator". Physical Review D. 84 (8): 081101. arXiv: 1108.5414 . Bibcode:2011PhRvD..84h1101B. doi:10.1103/PhysRevD.84.081101. S2CID   119196989.
  24. combined with electron coefficients
  25. Herrmann; et al. (2009). "Rotating optical cavity experiment testing Lorentz invariance at the 10−17 level". Physical Review D. 80 (100): 105011. arXiv: 1002.1284 . Bibcode:2009PhRvD..80j5011H. doi:10.1103/PhysRevD.80.105011. S2CID   118346408.
  26. Eisele; et al. (2009). "Laboratory Test of the Isotropy of Light Propagation at the 10−17 level" (PDF). Physical Review Letters. 103 (9): 090401. Bibcode:2009PhRvL.103i0401E. doi:10.1103/PhysRevLett.103.090401. PMID   19792767. S2CID   33875626. Archived from the original (PDF) on 2022-10-09. Retrieved 2012-07-21.
  27. Tobar; et al. (2010). "Testing local Lorentz and position invariance and variation of fundamental constants by searching the derivative of the comparison frequency between a cryogenic sapphire oscillator and hydrogen maser". Physical Review D. 81 (2): 022003. arXiv: 0912.2803 . Bibcode:2010PhRvD..81b2003T. doi:10.1103/PhysRevD.81.022003. S2CID   119262822.
  28. Tobar; et al. (2009). "Rotating odd-parity Lorentz invariance test in electrodynamics". Physical Review D. 80 (12): 125024. arXiv: 0909.2076 . Bibcode:2009PhRvD..80l5024T. doi:10.1103/PhysRevD.80.125024. S2CID   119175604.
  29. Müller; et al. (2007). "Relativity tests by complementary rotating Michelson-Morley experiments". Phys. Rev. Lett. 99 (5): 050401. arXiv: 0706.2031 . Bibcode:2007PhRvL..99e0401M. doi:10.1103/PhysRevLett.99.050401. PMID   17930733. S2CID   33003084.
  30. Carone; et al. (2006). "New bounds on isotropic Lorentz violation". Physical Review D. 74 (7): 077901. arXiv: hep-ph/0609150 . Bibcode:2006PhRvD..74g7901C. doi:10.1103/PhysRevD.74.077901. S2CID   119462975.
  31. Measured by examining the anomalous magnetic moment of the electron.
  32. Stanwix; et al. (2006). "Improved test of Lorentz invariance in electrodynamics using rotating cryogenic sapphire oscillators". Physical Review D. 74 (8): 081101. arXiv: gr-qc/0609072 . Bibcode:2006PhRvD..74h1101S. doi:10.1103/PhysRevD.74.081101. S2CID   3222284.
  33. Herrmann; et al. (2005). "Test of the Isotropy of the Speed of Light Using a Continuously Rotating Optical Resonator". Phys. Rev. Lett. 95 (15): 150401. arXiv: physics/0508097 . Bibcode:2005PhRvL..95o0401H. doi:10.1103/PhysRevLett.95.150401. PMID   16241700. S2CID   15113821.
  34. Stanwix; et al. (2005). "Test of Lorentz Invariance in Electrodynamics Using Rotating Cryogenic Sapphire Microwave Oscillators". Physical Review Letters. 95 (4): 040404. arXiv: hep-ph/0506074 . Bibcode:2005PhRvL..95d0404S. doi:10.1103/PhysRevLett.95.040404. PMID   16090785. S2CID   14255475.
  35. Antonini; et al. (2005). "Test of constancy of speed of light with rotating cryogenic optical resonators". Physical Review A. 71 (5): 050101. arXiv: gr-qc/0504109 . Bibcode:2005PhRvA..71e0101A. doi:10.1103/PhysRevA.71.050101. S2CID   119508308.
  36. Wolf; et al. (2004). "Improved test of Lorentz invariance in electrodynamics". Physical Review D. 70 (5): 051902. arXiv: hep-ph/0407232 . Bibcode:2004PhRvD..70e1902W. doi:10.1103/PhysRevD.70.051902. S2CID   19178203.
  37. Wolf; et al. (2004). "Whispering Gallery Resonators and Tests of Lorentz Invariance". General Relativity and Gravitation. 36 (10): 2351–2372. arXiv: gr-qc/0401017 . Bibcode:2004GReGr..36.2351W. doi:10.1023/B:GERG.0000046188.87741.51. S2CID   8799879.
  38. Müller; et al. (2003). "Modern Michelson-Morley experiment using cryogenic optical resonators". Physical Review Letters. 91 (2): 020401. arXiv: physics/0305117 . Bibcode:2003PhRvL..91b0401M. doi:10.1103/PhysRevLett.91.020401. PMID   12906465. S2CID   15770750.
  39. Lipa; et al. (2003). "New Limit on Signals of Lorentz Violation in Electrodynamics". Physical Review Letters. 90 (6): 060403. arXiv: physics/0302093 . Bibcode:2003PhRvL..90f0403L. doi:10.1103/PhysRevLett.90.060403. PMID   12633280. S2CID   38353693.
  40. Wolf; et al. (2003). "Tests of Lorentz Invariance using a Microwave Resonator". Physical Review Letters. 90 (6): 060402. arXiv: gr-qc/0210049 . Bibcode:2003PhRvL..90f0402W. doi:10.1103/PhysRevLett.90.060402. PMID   12633279. S2CID   18267310.
  41. Braxmaier; et al. (2002). "Tests of Relativity Using a Cryogenic Optical Resonator" (PDF). Phys. Rev. Lett. 88 (1): 010401. Bibcode:2001PhRvL..88a0401B. doi:10.1103/PhysRevLett.88.010401. PMID   11800924. Archived from the original (PDF) on 2021-03-23. Retrieved 2012-07-21.
  42. Hils, Dieter; Hall, J. L. (1990). "Improved Kennedy-Thorndike experiment to test special relativity". Phys. Rev. Lett. 64 (15): 1697–1700. Bibcode:1990PhRvL..64.1697H. doi:10.1103/PhysRevLett.64.1697. PMID   10041466.
  43. Brillet, A.; Hall, J. L. (1979). "Improved laser test of the isotropy of space". Phys. Rev. Lett. 42 (9): 549–552. Bibcode:1979PhRvL..42..549B. doi:10.1103/PhysRevLett.42.549.
  44. Williams, James G.; Turyshev, Slava G.; Boggs, Dale H. (2009). "Lunar Laser Ranging Tests of the Equivalence Principle with the Earth and Moon". International Journal of Modern Physics D. 18 (7): 1129–1175. arXiv: gr-qc/0507083 . Bibcode:2009IJMPD..18.1129W. doi:10.1142/S021827180901500X. S2CID   119086896.
  45. Bay, Z.; White, J. A. (1981). "Radar astronomy and the special theory of relativity". Acta Physica Academiae Scientiarum Hungaricae. 51 (3): 273–297. Bibcode:1981AcPhy..51..273B. doi:10.1007/BF03155586. S2CID   119362077.
  46. Müller, J.; Soffel, M. H. (1995). "A Kennedy-Thorndike experiment using LLR data". Physics Letters A. 198 (2): 71–73. Bibcode:1995PhLA..198...71M. doi:10.1016/0375-9601(94)01001-B.
  47. 1 2 Müller, J.; Nordtvedt, K.; Schneider, M.; Vokrouhlicky, D. (1999). "Improved Determination of Relativistic Quantities from LLR" (PDF). Proceedings of the 11th International Workshop on Laser Ranging Instrumentation. 10: 216–222.
  48. 1 2 3 Fermi LAT Collaboration (2009). "A limit on the variation of the speed of light arising from quantum gravity effects". Nature. 462 (7271): 331–334. arXiv: 0908.1832 . Bibcode:2009Natur.462..331A. doi:10.1038/nature08574. PMID   19865083. S2CID   205218977.
  49. Vasileiou; et al. (2013). "Bounds on Spectral Dispersion from Fermi-Detected Gamma Ray Bursts". Physical Review Letters. 87 (12): 122001. arXiv: 1305.3463 . Bibcode:2013PhRvD..87l2001V. doi:10.1103/PhysRevD.87.122001. S2CID   119222087.
  50. Nemiroff; et al. (2012). "Constraints on Lorentz invariance violation from Fermi-Large Area Telescope observations of gamma-ray bursts". Physical Review D. 108 (23): 231103. arXiv: 1109.5191 . Bibcode:2012PhRvL.108w1103N. doi:10.1103/PhysRevLett.108.231103. PMID   23003941. S2CID   15592150.
  51. HESS Collaboration (2008). "Limits on an Energy Dependence of the Speed of Light from a Flare of the Active Galaxy PKS 2155-304". Physical Review Letters. 101 (17): 170402. arXiv: 0810.3475 . Bibcode:2008PhRvL.101q0402A. doi:10.1103/PhysRevLett.101.170402. PMID   18999724. S2CID   15789937.
  52. 1 2 MAGIC Collaboration (2008). "Probing quantum gravity using photons from a flare of the active galactic nucleus Markarian 501 observed by the MAGIC telescope". Physics Letters B. 668 (4): 253–257. arXiv: 0708.2889 . Bibcode:2008PhLB..668..253M. doi:10.1016/j.physletb.2008.08.053. S2CID   5103618.
  53. Ellis; et al. (2006). "Robust limits on Lorentz violation from gamma-ray bursts". Astroparticle Physics. 25 (6): 402–411. arXiv: astro-ph/0510172 . Bibcode:2006APh....25..402E. doi:10.1016/j.astropartphys.2006.04.001.
  54. Ellis; et al. (2007). "Corrigendum to "Robust limits on Lorentz violation from gamma-ray bursts"". Astroparticle Physics. 29 (2): 158–159. arXiv: 0712.2781 . Bibcode:2008APh....29..158E. doi:10.1016/j.astropartphys.2007.12.003.
  55. Lamon; et al. (2008). "Study of Lorentz violation in INTEGRAL gamma-ray bursts". General Relativity and Gravitation. 40 (8): 1731–1743. arXiv: 0706.4039 . Bibcode:2008GReGr..40.1731L. doi:10.1007/s10714-007-0580-6. S2CID   1387664.
  56. Rodríguez Martínez; et al. (2006). "GRB 051221A and tests of Lorentz symmetry". Journal of Cosmology and Astroparticle Physics. 2006 (5): 017. arXiv: astro-ph/0601556 . Bibcode:2006JCAP...05..017R. doi:10.1088/1475-7516/2006/05/017. S2CID   18639701.
  57. Boggs; et al. (2004). "Testing Lorentz Invariance with GRB021206". The Astrophysical Journal. 611 (2): L77–L80. arXiv: astro-ph/0310307 . Bibcode:2004ApJ...611L..77B. doi:10.1086/423933. S2CID   15649601.
  58. Ellis; et al. (2003). "Quantum-gravity analysis of gamma-ray bursts using wavelets". Astronomy and Astrophysics. 402 (2): 409–424. arXiv: astro-ph/0210124 . Bibcode:2003A&A...402..409E. doi:10.1051/0004-6361:20030263. S2CID   15388873.
  59. Ellis; et al. (2000). "A Search in Gamma-Ray Burst Data for Nonconstancy of the Velocity of Light". The Astrophysical Journal. 535 (1): 139–151. arXiv: astro-ph/9907340 . Bibcode:2000ApJ...535..139E. doi:10.1086/308825. S2CID   18998838.
  60. Kaaret, Philip (1999). "Pulsar radiation and quantum gravity". Astronomy and Astrophysics. 345: L32–L34. arXiv: astro-ph/9903464 . Bibcode:1999A&A...345L..32K.
  61. Schaefer, Bradley E. (1999). "Severe Limits on Variations of the Speed of Light with Frequency". Physical Review Letters. 82 (25): 4964–4966. arXiv: astro-ph/9810479 . Bibcode:1999PhRvL..82.4964S. doi:10.1103/PhysRevLett.82.4964. S2CID   119339066.
  62. Biller; et al. (1999). "Limits to Quantum Gravity Effects on Energy Dependence of the Speed of Light from Observations of TeV Flares in Active Galaxies". Physical Review Letters. 83 (11): 2108–2111. arXiv: gr-qc/9810044 . Bibcode:1999PhRvL..83.2108B. doi:10.1103/PhysRevLett.83.2108. S2CID   43423079.
  63. 1 2 3 4 Stecker, Floyd W. (2011). "A new limit on Planck scale Lorentz violation from γ-ray burst polarization". Astroparticle Physics. 35 (2): 95–97. arXiv: 1102.2784 . Bibcode:2011APh....35...95S. doi:10.1016/j.astropartphys.2011.06.007. S2CID   119280055.
  64. Götz; et al. (2013). "The polarized gamma-ray burst GRB 061122". Monthly Notices of the Royal Astronomical Society . 431 (4): 3550–3556. arXiv: 1303.4186 . Bibcode:2013MNRAS.431.3550G. doi: 10.1093/mnras/stt439 . S2CID   53499528.
  65. Toma; et al. (2012). "Strict Limit on CPT Violation from Polarization of γ-Ray Bursts". Physical Review Letters. 109 (24): 241104. arXiv: 1208.5288 . Bibcode:2012PhRvL.109x1104T. doi:10.1103/PhysRevLett.109.241104. PMID   23368301. S2CID   42198517.
  66. Laurent; et al. (2011). "Constraints on Lorentz Invariance Violation using integral/IBIS observations of GRB041219A". Physical Review D. 83 (12): 121301. arXiv: 1106.1068 . Bibcode:2011PhRvD..83l1301L. doi:10.1103/PhysRevD.83.121301. S2CID   53603505.
  67. QUaD Collaboration (2009). "Parity Violation Constraints Using Cosmic Microwave Background Polarization Spectra from 2006 and 2007 Observations by the QUaD Polarimeter". Physical Review Letters. 102 (16): 161302. arXiv: 0811.0618 . Bibcode:2009PhRvL.102p1302W. doi:10.1103/PhysRevLett.102.161302. PMID   19518694. S2CID   84181915.
  68. Kostelecký, V. Alan; Mewes, Matthew (2008). "Astrophysical Tests of Lorentz and CPT Violation with Photons". The Astrophysical Journal. 689 (1): L1–L4. arXiv: 0809.2846 . Bibcode:2008ApJ...689L...1K. doi:10.1086/595815. S2CID   6465811.
  69. Maccione; et al. (2008). "γ-ray polarization constraints on Planck scale violations of special relativity". Physical Review D. 78 (10): 103003. arXiv: 0809.0220 . Bibcode:2008PhRvD..78j3003M. doi:10.1103/PhysRevD.78.103003. S2CID   119277171.
  70. Komatsu; et al. (2009). "Five-Year Wilkinson Microwave Anisotropy Probe Observations: Cosmological Interpretation". The Astrophysical Journal Supplement. 180 (2): 330–376. arXiv: 0803.0547 . Bibcode:2009ApJS..180..330K. doi:10.1088/0067-0049/180/2/330. S2CID   119290314.
  71. Kahniashvili; et al. (2008). "Testing Lorentz invariance violation with Wilkinson Microwave Anisotropy Probe five year data". Physical Review D. 78 (12): 123009. arXiv: 0803.2350 . Bibcode:2008ApJ...679L..61X. doi:10.1086/589447. S2CID   6069635.
  72. Cabella; et al. (2007). "Constraints on CPT violation from Wilkinson Microwave Anisotropy Probe three year polarization data: A wavelet analysis". Physical Review D. 76 (12): 123014. arXiv: 0705.0810 . Bibcode:2007PhRvD..76l3014C. doi:10.1103/PhysRevD.76.123014. S2CID   118717161.
  73. Fan; et al. (2007). "γ-ray burst ultraviolet/optical afterglow polarimetry as a probe of quantum gravity". Monthly Notices of the Royal Astronomical Society. 376 (4): 1857–1860. arXiv: astro-ph/0702006 . Bibcode:2007MNRAS.376.1857F. doi: 10.1111/j.1365-2966.2007.11576.x . S2CID   16384668.
  74. Feng; et al. (2006). "Searching for CPT Violation with Cosmic Microwave Background Data from WMAP and BOOMERANG". Physical Review Letters. 96 (22): 221302. arXiv: astro-ph/0601095 . Bibcode:2006PhRvL..96v1302F. doi:10.1103/PhysRevLett.96.221302. PMID   16803298. S2CID   29494306.
  75. Gleiser, Reinaldo J.; Kozameh, Carlos N. (2001). "Astrophysical limits on quantum gravity motivated birefringence". Physical Review D. 64 (8): 083007. arXiv: gr-qc/0102093 . Bibcode:2001PhRvD..64h3007G. doi:10.1103/PhysRevD.64.083007. S2CID   9255863.
  76. Carroll; et al. (1990). "Limits on a Lorentz- and parity-violating modification of electrodynamics". Physical Review D. 41 (4): 1231–1240. Bibcode:1990PhRvD..41.1231C. doi:10.1103/PhysRevD.41.1231. PMID   10012457.
  77. Jacobson; et al. (2002). "Threshold effects and Planck scale Lorentz violation: Combined constraints from high energy astrophysics". Physical Review D. 67 (12): 124011. arXiv: hep-ph/0209264 . Bibcode:2003PhRvD..67l4011J. doi:10.1103/PhysRevD.67.124011. S2CID   119452240.
  78. 1 2 Hohensee; et al. (2009). "Particle-Accelerator Constraints on Isotropic Modifications of the Speed of Light". Physical Review Letters. 102 (17): 170402. arXiv: 0904.2031 . Bibcode:2009PhRvL.102q0402H. doi:10.1103/PhysRevLett.102.170402. PMID   19518765. S2CID   13682668.
  79. 1 2 Stecker, Floyd W. (2014). "Constraining Superluminal Electron and Neutrino Velocities using the 2010 Crab Nebula Flare and the IceCube PeV Neutrino Events". Astroparticle Physics. 56: 16–18. arXiv: 1306.6095 . Bibcode:2014APh....56...16S. doi:10.1016/j.astropartphys.2014.02.007. S2CID   35659438.
  80. Stecker, Floyd W.; Scully, Sean T. (2009). "Searching for new physics with ultrahigh energy cosmic rays". New Journal of Physics. 11 (8): 085003. arXiv: 0906.1735 . Bibcode:2009NJPh...11h5003S. doi:10.1088/1367-2630/11/8/085003. S2CID   8009677.
  81. 1 2 Altschul, Brett (2009). "Bounding isotropic Lorentz violation using synchrotron losses at LEP". Physical Review D. 80 (9): 091901. arXiv: 0905.4346 . Bibcode:2009PhRvD..80i1901A. doi:10.1103/PhysRevD.80.091901. S2CID   18312444.
  82. Bi, Xiao-Jun; Cao, Zhen; Li, Ye; Yuan, Qiang (2009). "Testing Lorentz invariance with the ultrahigh energy cosmic ray spectrum". Physical Review D. 79 (8): 083015. arXiv: 0812.0121 . Bibcode:2009PhRvD..79h3015B. doi:10.1103/PhysRevD.79.083015. S2CID   118587418.
  83. Klinkhamer, F. R.; Schreck, M. (2008). "New two-sided bound on the isotropic Lorentz-violating parameter of modified Maxwell theory". Physical Review D. 78 (8): 085026. arXiv: 0809.3217 . Bibcode:2008PhRvD..78h5026K. doi:10.1103/PhysRevD.78.085026. S2CID   119293488.
  84. Klinkhamer, F. R.; Risse, M. (2008). "Ultrahigh-energy cosmic-ray bounds on nonbirefringent modified Maxwell theory". Physical Review D. 77 (1): 016002. arXiv: 0709.2502 . Bibcode:2008PhRvD..77a6002K. doi:10.1103/PhysRevD.77.016002. S2CID   119109140.
  85. Kaufhold, C.; Klinkhamer, F. R. (2007). "Vacuum Cherenkov radiation in spacelike Maxwell-Chern-Simons theory". Physical Review D. 76 (2): 025024. arXiv: 0704.3255 . Bibcode:2007PhRvD..76b5024K. doi:10.1103/PhysRevD.76.025024. S2CID   119692639.
  86. Altschul, Brett (2005). "Lorentz violation and synchrotron radiation". Physical Review D. 72 (8): 085003. arXiv: hep-th/0507258 . Bibcode:2005PhRvD..72h5003A. doi:10.1103/PhysRevD.72.085003. S2CID   2082044.
  87. Gagnon, Olivier; Moore, Guy D. (2004). "Limits on Lorentz violation from the highest energy cosmic rays". Physical Review D. 70 (6): 065002. arXiv: hep-ph/0404196 . Bibcode:2004PhRvD..70f5002G. doi:10.1103/PhysRevD.70.065002. S2CID   119104096.
  88. Jacobson; et al. (2004). "New Limits on Planck Scale Lorentz Violation in QED". Physical Review Letters. 93 (2): 021101. arXiv: astro-ph/0309681 . Bibcode:2004PhRvL..93b1101J. doi:10.1103/PhysRevLett.93.021101. PMID   15323893. S2CID   45952391.
  89. 1 2 M. Smiciklas; et al. (2011). "New Test of Local Lorentz Invariance Using a 21Ne-Rb-K Comagnetometer". Physical Review Letters. 107 (17): 171604. arXiv: 1106.0738 . Bibcode:2011PhRvL.107q1604S. doi:10.1103/PhysRevLett.107.171604. PMID   22107506. S2CID   17459575.
  90. Kostelecký, V. Alan; Lane, Charles D. (1999). "Constraints on Lorentz violation from clock-comparison experiments". Physical Review D. 60 (11): 116010. arXiv: hep-ph/9908504 . Bibcode:1999PhRvD..60k6010K. doi:10.1103/PhysRevD.60.116010. S2CID   119039071.
  91. Allmendinger; et al. (2014). "New limit on Lorentz and CPT violating neutron spin interactions using a free precession 3He-129Xe co-magnetometer". Physical Review Letters. 112 (11): 110801. arXiv: 1312.3225 . Bibcode:2014PhRvL.112k0801A. doi:10.1103/PhysRevLett.112.110801. PMID   24702343. S2CID   8122573.
  92. Hohensee; et al. (2013). "Limits on violations of Lorentz symmetry and the Einstein equivalence principle using radio-frequency spectroscopy of atomic dysprosium". Physical Review Letters. 111 (5): 050401. arXiv: 1303.2747 . Bibcode:2013PhRvL.111e0401H. doi:10.1103/PhysRevLett.111.050401. PMID   23952369. S2CID   27090952.
  93. Peck; et al. (2012). "New Limits on Local Lorentz Invariance in Mercury and Cesium". Physical Review A. 86 (1): 012109. arXiv: 1205.5022 . Bibcode:2012PhRvA..86a2109P. doi:10.1103/PhysRevA.86.012109. S2CID   118619087.
  94. Gemmel; et al. (2010). "Limit on Lorentz and CPT violation of the bound neutron using a free precession He3/Xe129 comagnetometer". Physical Review D. 82 (11): 111901. arXiv: 1011.2143 . Bibcode:2010PhRvD..82k1901G. doi:10.1103/PhysRevD.82.111901. S2CID   118438569.
  95. Brown; et al. (2010). "New Limit on Lorentz- and CPT-Violating Neutron Spin Interactions". Physical Review Letters. 105 (15): 151604. arXiv: 1006.5425 . Bibcode:2010PhRvL.105o1604B. doi:10.1103/PhysRevLett.105.151604. PMID   21230893. S2CID   4187692.
  96. Altarev, I.; et al. (2009). "Test of Lorentz Invariance with Spin Precession of Ultracold Neutrons". Physical Review Letters. 103 (8): 081602. arXiv: 0905.3221 . Bibcode:2009PhRvL.103h1602A. doi:10.1103/PhysRevLett.103.081602. PMID   19792714. S2CID   5224718.
  97. Heckel; et al. (2008). "Preferred-frame and CP-violation tests with polarized electrons". Physical Review D. 78 (9): 092006. arXiv: 0808.2673 . Bibcode:2008PhRvD..78i2006H. doi:10.1103/PhysRevD.78.092006. S2CID   119259958.
  98. Wolf; et al. (2006). "Cold Atom Clock Test of Lorentz Invariance in the Matter Sector". Physical Review Letters. 96 (6): 060801. arXiv: hep-ph/0601024 . Bibcode:2006PhRvL..96f0801W. doi:10.1103/PhysRevLett.96.060801. PMID   16605978. S2CID   141060.
  99. Canè; et al. (2004). "Bound on Lorentz and CPT Violating Boost Effects for the Neutron". Physical Review Letters. 93 (23): 230801. arXiv: physics/0309070 . Bibcode:2004PhRvL..93w0801C. doi:10.1103/PhysRevLett.93.230801. PMID   15601138. S2CID   20974775.
  100. Heckel; et al. (2006). "New CP-Violation and Preferred-Frame Tests with Polarized Electrons". Physical Review Letters. 97 (2): 021603. arXiv: hep-ph/0606218 . Bibcode:2006PhRvL..97b1603H. doi:10.1103/PhysRevLett.97.021603. PMID   16907432. S2CID   27027816.
  101. Humphrey; et al. (2003). "Testing CPT and Lorentz symmetry with hydrogen masers". Physical Review A. 68 (6): 063807. arXiv: physics/0103068 . Bibcode:2003PhRvA..68f3807H. doi:10.1103/PhysRevA.68.063807. S2CID   13659676.
  102. Hou; et al. (2003). "Test of Cosmic Spatial Isotropy for Polarized Electrons Using a Rotatable Torsion Balance". Physical Review Letters. 90 (20): 201101. arXiv: physics/0009012 . Bibcode:2003PhRvL..90t1101H. doi:10.1103/PhysRevLett.90.201101. PMID   12785879. S2CID   28211115.
  103. Phillips; et al. (2001). "Limit on Lorentz and CPT violation of the proton using a hydrogen maser". Physical Review D. 63 (11): 111101. arXiv: physics/0008230 . Bibcode:2001PhRvD..63k1101P. doi:10.1103/PhysRevD.63.111101. S2CID   10665017.
  104. Bear; et al. (2000). "Limit on Lorentz and CPT Violation of the Neutron Using a Two-Species Noble-Gas Maser". Physical Review Letters. 85 (24): 5038–5041. arXiv: physics/0007049 . Bibcode:2000PhRvL..85.5038B. doi:10.1103/PhysRevLett.85.5038. PMID   11102181. S2CID   41363493.
  105. Chou; et al. (2010). "Optical Clocks and Relativity". Science. 329 (5999): 1630–1633. Bibcode:2010Sci...329.1630C. doi:10.1126/science.1192720. PMID   20929843. S2CID   206527813.
  106. Novotny, C.; et al. (2009). "Sub-Doppler laser spectroscopy on relativistic beams and tests of Lorentz invariance". Physical Review A. 80 (2): 022107. Bibcode:2009PhRvA..80b2107N. doi:10.1103/PhysRevA.80.022107.
  107. Reinhardt; et al. (2007). "Test of relativistic time dilation with fast optical atomic clocks at different velocities". Nature Physics. 3 (12): 861–864. Bibcode:2007NatPh...3..861R. doi:10.1038/nphys778.
  108. Saathoff; et al. (2003). "Improved Test of Time Dilation in Special Relativity". Phys. Rev. Lett. 91 (19): 190403. Bibcode:2003PhRvL..91s0403S. doi:10.1103/PhysRevLett.91.190403. PMID   14611572.
  109. Grieser; et al. (1994). "A test of special relativity with stored lithium ions" (PDF). Applied Physics B: Lasers and Optics. 59 (2): 127–133. Bibcode:1994ApPhB..59..127G. doi:10.1007/BF01081163. S2CID   120291203.
  110. Greenberg, O. W. (2002). "CPT Violation Implies Violation of Lorentz Invariance". Physical Review Letters. 89 (23): 231602. arXiv: hep-ph/0201258 . Bibcode:2002PhRvL..89w1602G. doi:10.1103/PhysRevLett.89.231602. PMID   12484997. S2CID   9409237.
  111. Greenberg, O. W. (2011). "Remarks on a challenge to the relation between CPT and Lorentz violation". arXiv: 1105.0927 [hep-ph].
  112. 1 2 LHCb Collaboration (2016). "Search for violations of Lorentz invariance and CPT symmetry in B(s) mixing". Physical Review Letters. 116 (24): 241601. arXiv: 1603.04804 . Bibcode:2016PhRvL.116x1601A. doi:10.1103/PhysRevLett.116.241601. PMID   27367382. S2CID   206276472.
  113. BaBar Collaboration (2016). "Tests of CPT symmetry in B0-B0bar mixing and in B0 -> c cbar K0 decays". Physical Review D. 94 (3): 011101. arXiv: 1605.04545 . doi:10.1103/PhysRevD.94.011101. S2CID   104928733.
  114. 1 2 D0 Collaboration (2015). "Search for Violation of CPT and Lorentz invariance in Bs meson oscillations". Physical Review Letters. 115 (16): 161601. arXiv: 1506.04123 . Bibcode:2015PhRvL.115p1601A. doi:10.1103/PhysRevLett.115.161601. PMID   26550864. S2CID   5422866.{{cite journal}}: CS1 maint: numeric names: authors list (link)
  115. Belle Collaboration (2012). "Search for time-dependent CPT violation in hadronic and semileptonic B decays". Physical Review D. 85 (7): 071105. arXiv: 1203.0930 . Bibcode:2012PhRvD..85g1105H. doi:10.1103/PhysRevD.85.071105. S2CID   118453351.
  116. 1 2 Kostelecký, V. Alan; van Kooten, Richard J. (2010). "CPT violation and B-meson oscillations". Physical Review D. 82 (10): 101702. arXiv: 1007.5312 . Bibcode:2010PhRvD..82j1702K. doi:10.1103/PhysRevD.82.101702. S2CID   55598299.
  117. 1 2 BaBar Collaboration (2008). "Search for CPT and Lorentz Violation in B0-Bmacr0 Oscillations with Dilepton Events". Physical Review Letters. 100 (3): 131802. arXiv: 0711.2713 . Bibcode:2008PhRvL.100m1802A. doi:10.1103/PhysRevLett.100.131802. PMID   18517935. S2CID   118371724.
  118. BaBar Collaboration (2006). "Search for T, CP and CPT violation in B0-B0 mixing with inclusive dilepton events". Physical Review Letters. 96 (25): 251802. arXiv: hep-ex/0603053 . Bibcode:2006PhRvL..96y1802A. doi:10.1103/PhysRevLett.96.251802. PMID   16907295. S2CID   21907946.
  119. BaBar Collaboration (2004). "Limits on the decay-rate difference of neutral-B Mesons and on CP, T, and CPT Violation in B0-antiB0 oscillations". Physical Review D. 70 (25): 012007. arXiv: hep-ex/0403002 . Bibcode:2004PhRvD..70a2007A. doi:10.1103/PhysRevD.70.012007. S2CID   119469038.
  120. Belle Collaboration (2003). "Studies of B0-B0 mixing properties with inclusive dilepton events". Physical Review D. 67 (5): 052004. arXiv: hep-ex/0212033 . Bibcode:2003PhRvD..67e2004H. doi:10.1103/PhysRevD.67.052004. S2CID   119529021.
  121. FOCUS Collaboration (2003). "Charm system tests of CPT and Lorentz invariance with FOCUS". Physics Letters B. 556 (1–2): 7–13. arXiv: hep-ex/0208034 . Bibcode:2003PhLB..556....7F. doi:10.1016/S0370-2693(03)00103-5. S2CID   119339001.
  122. KTeV Collaboration (2011). "Precise measurements of direct CP violation, CPT symmetry, and other parameters in the neutral kaon system". Physical Review D. 83 (9): 092001. arXiv: 1011.0127 . Bibcode:2011PhRvD..83i2001A. doi:10.1103/PhysRevD.83.092001. S2CID   415448.
  123. KLOE Collaboration (2006). "First observation of quantum interference in the process ϕ→KK→ππππ: A test of quantum mechanics and CPT symmetry". Physics Letters B. 642 (4): 315–321. arXiv: hep-ex/0607027 . Bibcode:2006PhLB..642..315K. doi:10.1016/j.physletb.2006.09.046. S2CID   119508337.
  124. CPLEAR Collaboration (2003). "Physics at CPLEAR". Physics Reports. 374 (3): 165–270. Bibcode:2003PhR...374..165A. doi:10.1016/S0370-1573(02)00367-8.
  125. KTeV Collaboration (2003). "Measurements of direct CP violation, CPT symmetry, and other parameters in the neutral kaon system". Physical Review D. 67 (1): 012005. arXiv: hep-ex/0208007 . Bibcode:2003PhRvD..67a2005A. doi:10.1103/PhysRevD.67.012005.
  126. NA31 Collaboration (1990). "A measurement of the phases of the CP-violating amplitudes in K0-->2π decays and a test of CPT invariance" (PDF). Physics Letters B. 237 (2): 303–312. Bibcode:1990PhLB..237..303C. doi:10.1016/0370-2693(90)91448-K.{{cite journal}}: CS1 maint: numeric names: authors list (link)
  127. CDF Collaboration (2013). "Measurement of the Mass Difference Between Top and Anti-top Quarks". Physical Review D. 87 (5): 052013. arXiv: 1210.6131 . Bibcode:2013PhRvD..87e2013A. doi:10.1103/PhysRevD.87.052013. S2CID   119239216.
  128. CMS Collaboration (2012). "Measurement of the Mass Difference between Top and Antitop Quarks". Journal of High Energy Physics. 2012 (6): 109. arXiv: 1204.2807 . Bibcode:2012JHEP...06..109C. doi:10.1007/JHEP06(2012)109. S2CID   115913220.
  129. D0 Collaboration (2011). "Direct Measurement of the Mass Difference between Top and Antitop Quarks". Physical Review D. 84 (5): 052005. arXiv: 1106.2063 . Bibcode:2011PhRvD..84e2005A. doi:10.1103/PhysRevD.84.052005. S2CID   3911219.{{cite journal}}: CS1 maint: numeric names: authors list (link)
  130. CDF Collaboration (2011). "Measurement of the Mass Difference between t and t¯ Quarks". Physical Review Letters. 106 (15): 152001. arXiv: 1103.2782 . Bibcode:2011PhRvL.106o2001A. doi:10.1103/PhysRevLett.106.152001. PMID   21568546. S2CID   9823674.
  131. D0 Collaboration (2009). "Direct Measurement of the Mass Difference between Top and Antitop Quarks". Physical Review Letters. 103 (13): 132001. arXiv: 0906.1172 . Bibcode:2009PhRvL.103m2001A. doi:10.1103/PhysRevLett.103.132001. PMID   19905503. S2CID   3911219.{{cite journal}}: CS1 maint: numeric names: authors list (link)
  132. Gabrielse; et al. (1999). "Precision Mass Spectroscopy of the Antiproton and Proton Using Simultaneously Trapped Particles". Physical Review Letters. 82 (16): 3198–3201. Bibcode:1999PhRvL..82.3198G. doi:10.1103/PhysRevLett.82.3198. S2CID   55054189.
  133. Dehmelt; et al. (1999). "Past Electron-Positron g-2 Experiments Yielded Sharpest Bound on CPT Violation for Point Particles". Physical Review Letters. 83 (23): 4694–4696. arXiv: hep-ph/9906262 . Bibcode:1999PhRvL..83.4694D. doi:10.1103/PhysRevLett.83.4694. S2CID   116195114.
  134. Hughes; et al. (2001). "Test of CPT and Lorentz Invariance from Muonium Spectroscopy". Physical Review Letters. 87 (11): 111804. arXiv: hep-ex/0106103 . Bibcode:2001PhRvL..87k1804H. doi:10.1103/PhysRevLett.87.111804. PMID   11531514. S2CID   119501031.
  135. Bennett; et al. (2008). "Search for Lorentz and CPT Violation Effects in Muon Spin Precession". Physical Review Letters. 100 (9): 091602. arXiv: 0709.4670 . Bibcode:2008PhRvL.100i1602B. doi:10.1103/PhysRevLett.100.091602. PMID   18352695. S2CID   26270066.
  136. Altschul, Brett (2007). "Astrophysical limits on Lorentz violation for all charged species". Astroparticle Physics. 28 (3): 380–384. arXiv: hep-ph/0610324 . Bibcode:2007APh....28..380A. doi:10.1016/j.astropartphys.2007.08.003. S2CID   16235612.
  137. D0 Collaboration (2012). "Search for violation of Lorentz invariance in top quark pair production and decay". Physical Review Letters. 108 (26): 261603. arXiv: 1203.6106 . Bibcode:2012PhRvL.108z1603A. doi:10.1103/PhysRevLett.108.261603. PMID   23004960. S2CID   11077644.{{cite journal}}: CS1 maint: numeric names: authors list (link)
  138. Charneski; et al. (2012). "Lorentz violation bounds on Bhabha scattering". Physical Review D. 86 (4): 045003. arXiv: 1204.0755 . Bibcode:2012PhRvD..86d5003C. doi:10.1103/PhysRevD.86.045003. S2CID   119276343.
  139. Bailey, Quentin G.; Kostelecký, V. Alan (2006). "Signals for Lorentz violation in post-Newtonian gravity". Physical Review D. 74 (4): 045001. arXiv: gr-qc/0603030 . Bibcode:2006PhRvD..74d5001B. doi:10.1103/PhysRevD.74.045001. S2CID   26268407.
  140. Battat, James B. R.; Chandler, John F.; Stubbs, Christopher W. (2007). "Testing for Lorentz Violation: Constraints on Standard-Model-Extension Parameters via Lunar Laser Ranging". Physical Review Letters. 99 (24): 241103. arXiv: 0710.0702 . Bibcode:2007PhRvL..99x1103B. doi:10.1103/PhysRevLett.99.241103. PMID   18233436. S2CID   19661431.
  141. Iorio, L. (2012). "Orbital effects of Lorentz-violating standard model extension gravitomagnetism around a static body: a sensitivity analysis". Classical and Quantum Gravity. 29 (17): 175007. arXiv: 1203.1859 . Bibcode:2012CQGra..29q5007I. doi:10.1088/0264-9381/29/17/175007. S2CID   118516169.
  142. Xie, Yi (2012). "Testing Lorentz violation with binary pulsars: constraints on standard model extension". Research in Astronomy and Astrophysics. 13 (1): 1–4. arXiv: 1208.0736 . Bibcode:2013RAA....13....1X. doi:10.1088/1674-4527/13/1/001. S2CID   118469165.
  143. Díaz, Jorge S.; Kostelecký, V. Alan (2012). "Lorentz- and CPT-violating models for neutrino oscillations". Physical Review D. 85 (1): 016013. arXiv: 1108.1799 . Bibcode:2012PhRvD..85a6013D. doi:10.1103/PhysRevD.85.016013. S2CID   55890338.
  144. Double Chooz collaboration (2012). "First test of Lorentz violation with a reactor-based antineutrino experiment". Physical Review D. 86 (11): 112009. arXiv: 1209.5810 . Bibcode:2012PhRvD..86k2009A. doi:10.1103/PhysRevD.86.112009. S2CID   3282231.
  145. MINOS collaboration (2012). "Search for Lorentz invariance and CPT violation with muon antineutrinos in the MINOS Near Detector". Physical Review D. 85 (3): 031101. arXiv: 1201.2631 . Bibcode:2012PhRvD..85c1101A. doi:10.1103/PhysRevD.85.031101. S2CID   13726208.
  146. MiniBooNE Collaboration (2013). "Test of Lorentz and CPT violation with Short Baseline Neutrino Oscillation Excesses". Physics Letters B. 718 (4): 1303–1308. arXiv: 1109.3480 . Bibcode:2013PhLB..718.1303A. doi:10.1016/j.physletb.2012.12.020. S2CID   56363527.
  147. IceCube Collaboration (2010). "Search for a Lorentz-violating sidereal signal with atmospheric neutrinos in IceCube". Physical Review D. 82 (11): 112003. arXiv: 1010.4096 . Bibcode:2010PhRvD..82k2003A. doi:10.1103/PhysRevD.82.112003. S2CID   41803841.
  148. MINOS collaboration (2010). "Search for Lorentz Invariance and CPT Violation with the MINOS Far Detector". Physical Review Letters. 105 (15): 151601. arXiv: 1007.2791 . Bibcode:2010PhRvL.105o1601A. doi:10.1103/PhysRevLett.105.151601. PMID   21230890. S2CID   728955.
  149. MINOS collaboration (2008). "Testing Lorentz Invariance and CPT Conservation with NuMI Neutrinos in the MINOS Near Detector". Physical Review Letters. 101 (15): 151601. arXiv: 0806.4945 . Bibcode:2008PhRvL.101o1601A. doi:10.1103/PhysRevLett.101.151601. PMID   18999585. S2CID   5924748.
  150. LSND collaboration (2005). "Tests of Lorentz violation in ν¯μ→ν¯e oscillations". Physical Review D. 72 (7): 076004. arXiv: hep-ex/0506067 . Bibcode:2005PhRvD..72g6004A. doi:10.1103/PhysRevD.72.076004. S2CID   117963760.
  151. Mattingly; et al. (2010). "Possible cosmogenic neutrino constraints on Planck-scale Lorentz violation". Journal of Cosmology and Astroparticle Physics. 2010 (2): 007. arXiv: 0911.0521 . Bibcode:2010JCAP...02..007M. doi:10.1088/1475-7516/2010/02/007. S2CID   118457258.
  152. Kostelecky, Alan; Mewes, Matthew (May 25, 2012). "Neutrinos with Lorentz-violating operators of arbitrary dimension". Physical Review D. 85 (9). 096005. arXiv: 1112.6395 . Bibcode:2012PhRvD..85i6005K. doi:10.1103/PhysRevD.85.096005. S2CID   118474142.
  153. Borriello; et al. (2013). "Stringent constraint on neutrino Lorentz invariance violation from the two IceCube PeV neutrinos". Physical Review D. 87 (11): 116009. arXiv: 1303.5843 . Bibcode:2013PhRvD..87k6009B. doi:10.1103/PhysRevD.87.116009. S2CID   118521330.
  154. Cowsik; et al. (2012). "Testing violations of Lorentz invariance with cosmic rays". Physical Review D. 86 (4): 045024. arXiv: 1206.0713 . Bibcode:2012PhRvD..86d5024C. doi:10.1103/PhysRevD.86.045024. S2CID   118567883.
  155. Huo, Yunjie; Li, Tianjun; Liao, Yi; Nanopoulos, Dimitri V.; Qi, Yonghui (2012). "Constraints on neutrino velocities revisited". Physical Review D. 85 (3): 034022. arXiv: 1112.0264 . Bibcode:2012PhRvD..85c4022H. doi:10.1103/PhysRevD.85.034022. S2CID   118501796.
  156. ICARUS Collaboration (2012). "A search for the analogue to Cherenkov radiation by high energy neutrinos at superluminal speeds in ICARUS". Physics Letters B. 711 (3–4): 270–275. arXiv: 1110.3763 . Bibcode:2012PhLB..711..270I. doi:10.1016/j.physletb.2012.04.014. S2CID   118357662.
  157. Cowsik, R.; Nussinov, S.; Sarkar, U. (2011). "Superluminal neutrinos at OPERA confront pion decay kinematics". Physical Review Letters. 107 (25): 251801. arXiv: 1110.0241 . Bibcode:2011PhRvL.107y1801C. doi:10.1103/PhysRevLett.107.251801. PMID   22243066. S2CID   6226647.
  158. Bi, Xiao-Jun; Yin, Peng-Fei; Yu, Zhao-Huan; Yuan, Qiang (2011). "Constraints and tests of the OPERA superluminal neutrinos". Physical Review Letters. 107 (24): 241802. arXiv: 1109.6667 . Bibcode:2011PhRvL.107x1802B. doi:10.1103/PhysRevLett.107.241802. PMID   22242991. S2CID   679836.
  159. Cohen, Andrew G.; Glashow, Sheldon L. (2011). "Pair Creation Constrains Superluminal Neutrino Propagation". Physical Review Letters. 107 (18): 181803. arXiv: 1109.6562 . Bibcode:2011PhRvL.107r1803C. doi:10.1103/PhysRevLett.107.181803. PMID   22107624. S2CID   56198539.
  160. LSND Collaboration (2001). "Evidence for neutrino oscillations from the observation of ν¯e appearance in a ν¯μ beam". Physical Review D. 64 (11): 112007. arXiv: hep-ex/0104049 . Bibcode:2001PhRvD..64k2007A. doi:10.1103/PhysRevD.64.112007. S2CID   118686517.
  161. MiniBooNE Collaboration (2007). "Search for Electron Neutrino Appearance at the Δm2˜1eV2 Scale". Physical Review Letters. 98 (23): 231801. arXiv: 0704.1500 . Bibcode:2007PhRvL..98w1801A. doi:10.1103/PhysRevLett.98.231801. PMID   17677898. S2CID   119315296.
  162. MiniBooNE Collaboration (2009). "Unexplained Excess of Electronlike Events from a 1-GeV Neutrino Beam". Physical Review Letters. 102 (10): 101802. arXiv: 0812.2243 . Bibcode:2009PhRvL.102j1802A. doi:10.1103/PhysRevLett.102.101802. PMID   19392103. S2CID   3067551.
  163. "MiniBooNE results suggest antineutrinos act differently". Fermilab today. June 18, 2010. Retrieved 14 December 2011.
  164. MiniBooNE Collaboration (2010). "Event Excess in the MiniBooNE Search for ν¯μ→ν¯e Oscillations". Physical Review Letters. 105 (18): 181801. arXiv: 1007.1150 . Bibcode:2010PhRvL.105r1801A. doi:10.1103/PhysRevLett.105.181801. PMID   21231096. S2CID   125243279.
  165. Diaz, Jorge S. (2011). "Overview of Lorentz Violation in Neutrinos". Proceedings of the DPF-2011 Conference. arXiv: 1109.4620 . Bibcode:2011arXiv1109.4620D.
  166. OPERA collaboration (2011). "Measurement of the neutrino velocity with the OPERA detector in the CNGS beam". arXiv: 1109.4897 [hep-ex].
  167. OPERA collaboration (2012). "Measurement of the neutrino velocity with the OPERA detector in the CNGS beam". Journal of High Energy Physics. 2012 (10): 93. arXiv: 1109.4897 . Bibcode:2012JHEP...10..093A. doi:10.1007/JHEP10(2012)093. S2CID   17652398.
  168. "New measurements from Fermilab's MINOS experiment suggest a difference in a key property of neutrinos and antineutrinos". Fermilab press release. June 14, 2010. Retrieved 14 December 2011.
  169. MINOS Collaboration (2011). "First Direct Observation of Muon Antineutrino Disappearance". Physical Review Letters. 107 (2): 021801. arXiv: 1104.0344 . Bibcode:2011PhRvL.107b1801A. doi:10.1103/PhysRevLett.107.021801. PMID   21797594. S2CID   14782259.
  170. MINOS Collaboration (2011). "Search for the disappearance of muon antineutrinos in the NuMI neutrino beam". Physical Review D. 84 (7): 071103. arXiv: 1108.1509 . Bibcode:2011PhRvD..84g1103A. doi:10.1103/PhysRevD.84.071103. S2CID   6250231.
  171. "Surprise difference in neutrino and antineutrino mass lessening with new measurements from a Fermilab experiment". Fermilab press release. August 25, 2011. Retrieved 14 December 2011.
  172. MINOS Collaboration (2012). "An improved measurement of muon antineutrino disappearance in MINOS". Physical Review Letters. 108 (19): 191801. arXiv: 1202.2772 . Bibcode:2012PhRvL.108s1801A. doi:10.1103/PhysRevLett.108.191801. PMID   23003026. S2CID   7735148.
  173. George Musser (22 August 2007). "Hints of a breakdown of relativity theory?". Scientific American. Retrieved 15 October 2011.
  174. Nodland, Borge; Ralston, John P. (1997). "Indication of Anisotropy in Electromagnetic Propagation over Cosmological Distances". Physical Review Letters. 78 (16): 3043–3046. arXiv: astro-ph/9704196 . Bibcode:1997PhRvL..78.3043N. doi:10.1103/PhysRevLett.78.3043. S2CID   119410346.
  175. Nodland, Borge; Ralston, John P. (1997). "Nodland and Ralston Reply". Physical Review Letters. 79 (10): 1958–1959. arXiv: astro-ph/9705190 . Bibcode:1997PhRvL..79.1958N. doi:10.1103/PhysRevLett.79.1958. S2CID   119418317.
  176. Borge Nodland, John P. Ralston (1997), Response to Leahy's Comment on the Data's Indication of Cosmological Birefringence, arXiv : astro-ph/9706126
  177. J.P. Leahy (1997-09-16). "Is the Universe Screwy?".
  178. Ted Bunn. "Is the Universe Birefringent?".
  179. Eisenstein, Daniel J.; Bunn, Emory F. (1997). "Appropriate Null Hypothesis for Cosmological Birefringence". Physical Review Letters. 79 (10): 1957–1958. arXiv: astro-ph/9704247 . Bibcode:1997PhRvL..79.1957E. doi:10.1103/PhysRevLett.79.1957. S2CID   117874561.
  180. Carroll, Sean M.; Field, George B. (1997). "Is There Evidence for Cosmic Anisotropy in the Polarization of Distant Radio Sources?". Physical Review Letters. 79 (13): 2394–2397. arXiv: astro-ph/9704263 . Bibcode:1997PhRvL..79.2394C. doi:10.1103/PhysRevLett.79.2394. S2CID   13943605.
  181. J. P. Leahy: (1997) Comment on the Measurement of Cosmological Birefringence, arXiv : astro-ph/9704285
  182. Wardle; et al. (1997). "Observational Evidence against Birefringence over Cosmological Distances". Physical Review Letters. 79 (10): 1801–1804. arXiv: astro-ph/9705142 . Bibcode:1997PhRvL..79.1801W. doi:10.1103/PhysRevLett.79.1801. S2CID   8589632.
  183. Loredo; et al. (1997). "Bayesian analysis of the polarization of distant radio sources: Limits on cosmological birefringence". Physical Review D. 56 (12): 7507–7512. arXiv: astro-ph/9706258 . Bibcode:1997PhRvD..56.7507L. doi:10.1103/PhysRevD.56.7507. S2CID   119372269.