This article relies largely or entirely on a single source .(February 2012) |
In gambling parlance, making a book is the practice of laying bets on the various possible outcomes of a single event. The phrase originates from the practice of recording such wagers in a hard-bound ledger (the 'book') and gives the English language the term bookmaker for the person laying the bets and thus 'making the book'. [1] : 6 [2] : 13, 36
A bookmaker strives to accept bets on the outcome of an event in the right proportions in order to make a profit regardless of which outcome prevails. [3] See Dutch book and coherence (philosophical gambling strategy). This is achieved primarily by adjusting what are determined to be the true odds of the various outcomes of an event in a downward fashion (i.e. the bookmaker will pay out using his actual odds, an amount which is less than the true odds would have paid, thus ensuring a profit). [4]
The odds quoted for a particular event may be fixed but are more likely to fluctuate in order to take account of the size of wagers placed by the bettors in the run-up to the actual event (e.g. a horse race). This article explains the mathematics of making a book in the (simpler) case of the former event. For the second method, see Parimutuel betting.
It is important to understand the relationship between fractional and decimal odds. Fractional odds are written a − b (a/b or a to b), meaning a winning bettor will receive their money back plus a units for every b units they bet. Decimal odds are a single value, greater than 1, representing the amount to be paid out for each unit bet. For example, a bet of £40 at 6 − 4 (fractional odds) will pay out £40 + £60 = £100. The equivalent decimal odds are 2.5; £40 × 2.5 = £100. We can convert fractional to decimal odds by the formula D = (b + a)⁄b. Hence, fractional odds of a − 1 (ie. b = 1) can be obtained from decimal odds by a = D − 1.
It is also important to understand the relationship between odds and implied probabilities: Fractional odds of a − b (with corresponding decimal odds D) represent an implied probability of b⁄(a + b) = 1⁄D, e.g. 6-4 corresponds to 4⁄(6 + 4) = 4⁄10 = 0.4 (40%). An implied probability of x is represented by fractional odds of (1 − x)/x, e.g. 0.2 is (1 − 0.2)/0.2 = 0.8/0.2 = 4/1 (4-1, 4 to 1) (equivalently, 1⁄x − 1 to 1), and decimal odds of D = 1⁄x.
In considering a football match (the event) that can be either a 'home win', 'draw' or 'away win' (the outcomes) then the following odds might be encountered to represent the true chance of each of the three outcomes:
These odds can be represented as implied probabilities (or percentages by multiplying by 100) as follows:
By adding the percentages together a total 'book' of 100% is achieved (representing a fair book). The bookmaker will reduce these odds to ensure a profit. Consider the simplest model of reducing, which uses a proportional decreasing of odds. For the above example, the following odds are in the same proportion with regard to their implied probabilities (3:2:1):
By adding these percentages together a 'book' of 120% is achieved.
The amount by which the actual 'book' exceeds 100% is known as the 'overround', [1] : 96–104 [2] : 126–130 'bookmaker margin' [4] or the 'vigorish' or 'vig' [4] and represents the bookmaker's expected profit. Thus, in an "ideal" situation, if the bookmaker accepts £120 in bets at his own quoted odds in the correct proportion, he will pay out only £100 (including returned stakes) no matter the actual outcome of the football match. Examining how he potentially achieves this:
Total stakes received are £120.00 with a maximum payout of £100.00 irrespective of the result. This £20.00 profit represents a 162⁄3 % profit on turnover (20.00/120.00).
In reality, bookmakers use models of reducing that are more complicated than this model of the 'ideal' situation.
Bookmaker margin in English football leagues decreased in recent years. [5] A study of six large bookmakers between the 2005/06 season and 2017/2018 season showed that average margin in Premier League decreased from 9% to 4%, in English Football League Championship, English Football League One, and English Football League Two from 11% to 6%, and in National League from 11% to 8%.
When a punter (bettor) combines more than one selection in, for example, a double, treble or accumulator bet, then the effect of the overround in the book of each selection is compounded. This is to the detriment of the punter in terms of the financial return compared to the true odds of all of the selections winning and thus resulting in a successful bet.
For example, consider a double made by selecting the winners from two tennis matches:
In Match 1 between players A and B, both players are assessed to have an equal chance of winning. The situation is the same in Match 2 between players C and D. In a fair book in each of their matches, i.e. each has a book of 100%, all players would be offered at odds of Evens (1-1). However, a bookmaker would probably offer odds of 5-6 (for example) on each of the two possible outcomes in each event (each tennis match). This results in a book for each of the tennis matches of 109.09...%, calculated by 100 × (6⁄11 + 6⁄11) i.e. 9.09% overround.
There are four possible outcomes from combining the results from both matches: the winning pair of players could be AC, AD, BC or BD. As each of the outcomes for this example have been deliberately chosen to ensure that they are equally likely, the probability of each outcome occurring is 1⁄4 or 0.25, and the fractional odds against each one occurring is 3-1. A bet of 100 units on any of the four combinations would produce a return of 100 × (3/1 + 1) = 400 units if successful, reflecting decimal odds of 4.0.
The decimal odds of a multiple bet is often calculated by multiplying the decimal odds of the individual bets, the idea being that if the events are independent then the implied probability should be the product of the implied probabilities of the individual bets. In the above case with fractional odds of 5 − 6, the decimal odds are 11⁄6. So the decimal odds of the double bet is 11⁄6×11⁄6 = 1.833...×1.833... = 3.3611..., or fractional odds of 2.3611 − 1. This represents an implied probability of 29.752% (1/3.3611) and multiplying by 4 (for each of the four equally likely combinations of outcomes) gives a total book of 119.01%. Thus the overround has slightly more than doubled by combining two single bets into a double.
In general, the combined overround on a double (OD), expressed as a percentage, is calculated from the individual books B1 and B2, expressed as decimals, by OD = B1 × B2 × 100 - 100. In the example we have OD = 1.0909 × 1.0909 × 100 - 100 = 19.01%.
This massive increase in potential profit for the bookmaker (19% instead of 9% on an event; in this case the double) is the main reason why bookmakers pay bonuses for the successful selection of winners in multiple bets. Compare offering a 25% bonus on the correct choice of four winners from four selections in a Yankee, for example, when the potential overround on a simple fourfold of races with individual books of 120% is over 107% (a book of 207%). This is why bookmakers offer bets such as Lucky 15 , Lucky 31 and Lucky 63, offering double the odds for one winner and increasing percentage bonuses for two, three and more winners.
In general, for any accumulator bet from two to i selections, the combined percentage overround of books of B1, B2, ..., Bi given in terms of decimals, is calculated by B1 × B2 × ... × Bi × 100 - 100. E.g. the previously mentioned fourfold consisting of individual books of 120% (1.20) gives an overround of 1.20 × 1.20 × 1.20 × 1.20 × 100 − 100 = 107.36%.
In settling winning bets, either decimal odds are used, or one is added to the fractional odds. This is to include the stake in the return. The place part of each-way bets is calculated separately from the win part; the method is identical but the odds are reduced by whatever the place factor is for the particular event (see Accumulator below for detailed example). All bets are taken as 'win' bets unless 'each-way' is specifically stated. All show use of fractional odds: replace (fractional odds + 1) by decimal odds if decimal odds are known. Non-runners are treated as winners with fractional odds of zero (decimal odds of 1). Fractions of pence in total winnings are invariably rounded down by bookmakers to the nearest penny below. Calculations below for multiple-bet wagers result in totals being shown for the separate categories (e.g. doubles, trebles etc.), and therefore overall returns may not be exactly the same as the amount received from using the computer software available to bookmakers to calculate total winnings. [1] : 138–147 [2] : 163–177
Win single
E.g. £100 single at 9 − 2; total staked = £100
Each-way single
E.g. £100 each-way single at 11 − 4 ( 1⁄5 odds a place); total staked = £200
Each-way multiple bets are usually settled using a default "Win to Win, Place to Place" method, meaning that the bet consists of a win accumulator and a separate place accumulator (Note: a double or treble is an accumulator with 2 or 3 selections respectively). However, a more uncommon way of settling these type of bets is "Each-Way all Each-Way" (known as "Equally Divided", which must normally be requested as such on the betting slip) in which the returns from one selection in the accumulator are split to form an equal-stake each-way bet on the next selection and so on until all selections have been used. [1] : 155–156 [2] : 170–171 The first example below shows the two different approaches to settling these types of bets.
Double [1] : 153–168 [2] : 169–177
E.g. £100 each-way double with winners at 2-1 ( 1⁄5 odds a place) and 5-4 ( 1⁄4 odds a place); total staked = £200
Note: "Win to Win, Place to Place" will always provide a greater return if all selections win, whereas "Each-Way all Each-Way" provides greater compensation if one selection is a loser as each of the other winners provide a greater amount of place money for subsequent selections.
Treble [1] : 153-168 [2] : 169-177
E.g. £100 treble with winners at 3-1, 4-6 and 11-4; total staked = £100
Accumulator [1] : 153-168 [2] : 169-177
E.g. £100 each-way fivefold accumulator with winners at Evens ( 1⁄4 odds a place), 11-8 ( 1⁄5 odds), 5-4 ( 1⁄4 odds), 1-2 (all up to win) and 3-1 ( 1⁄5 odds); total staked = £200
Note: 'All up to win' means there are insufficient participants in the event for place odds to be given (e.g. 4 or fewer runners in a horse race). The only 'place' therefore is first place, for which the win odds are given.
Trixie
Yankee
Trixie, Yankee, Canadian , Heinz , Super Heinz and Goliath form a family of bets known as full cover bets which have all possible multiples present. Examples of winning Trixie and Yankee bets have been shown above. The other named bets are calculated in a similar way by looking at all the possible combinations of selections in their multiples. Note: A Double may be thought of as a full cover bet with only two selections.
Should a selection in one of these bets not win, then the remaining winners are treated as being a wholly successful bet on the next 'family member' down. For example, only two winners out of three in a Trixie means the bet is settled as a double; only four winners out of five in a Canadian means it is settled as a Yankee; only five winners out of eight in a Goliath means it is settled as a Canadian. The place part of each-way bets is calculated separately using reduced place odds. Thus, an each-way Super Heinz on seven horses with three winners and a further two placed horses is settled as a win Trixie and a place Canadian. Virtually all bookmakers use computer software for ease, speed and accuracy of calculation for the settling of multiples bets.
Patent
Patent, Lucky 15 , Lucky 31 , Lucky 63 and higher Lucky bets form a family of bets known as full cover bets with singles which have all possible multiples present together with single bets on all selections. An examples of a winning Patent bet has been shown above. The other named bets are calculated in a similar way by looking at all the possible combinations of selections in their multiples and singles.
Should a selection in one of these bets not win, then the remaining winners are treated as being a wholly successful bet on the next 'family member' down. For example, only two winners out of three in a Patent means the bet is settled as a double and two singles; only three winners out of four in a Lucky 15 means it is settled as a Patent; only four winners out of six in a Lucky 63 means it is settled as a Lucky 15. The place part of each-way bets is calculated separately using reduced place odds. Thus, an each-way Lucky 63 on six horses with three winners and a further two placed horses is settled as a win Patent and a place Lucky 31.
Returns on any bet may be considered to be calculated as 'stake unit' × 'odds multiplier'. The overall 'odds multiplier' is a combined decimal odds value and is the result of all the individual bets that make up a full cover bet, including singles if needed. E.g. if a successful £10 Yankee returned £461.35 then the overall 'odds multiplier' (OM) is 46.135.
If a, b, c, d... represent the decimal odds, i.e. (fractional odds + 1), then an OM can be calculated algebraically by multiplying the expressions (a + 1), (b + 1), (c + 1)... etc. together in the required manner and subtracting 1. If required, (decimal odds + 1) may be replaced by (fractional odds + 2). [1] : 166 [2] : 169, 176
3 selections with decimal odds a, b and c. Expanding (a + 1)(b + 1)(c + 1) algebraically gives abc + ab + ac + bc + a + b + c + 1. This is equivalent to the OM for a Patent (treble: abc; doubles: ab, ac and bc; singles: a, b and c) plus 1. Therefore to calculate the returns for a winning Patent it is just a case of multiplying (a + 1), (b + 1) and (c + 1) together and subtracting 1 to get the OM for the winning bet, i.e. OM = (a + 1)(b + 1)(c + 1) − 1. Now multiply by the unit stake to get the total return on the bet. [1] : 161 [2] : 176
E.g. The winning Patent described earlier can be more quickly and simply evaluated by the following:
Ignoring any bonuses, a 50 pence each-way Lucky 63 (total stake £63) with 4 winners [2-1, 5-2, 7-2 (all 1⁄5 odds a place) and 6-4 (1⁄4 odds a place)] and a further placed horse [9-2 (1⁄5 odds a place)] can be relatively easily calculated as follows:
For the family of full cover bets that do not include singles an adjustment to the calculation is made to leave just the doubles, trebles and accumulators. Thus, a previously described winning £10 Yankee with winners at 1-3, 5-2, 6-4 and Evens has returns calculated by:
In effect, the bet has been calculated as a Lucky 15 minus the singles. Note that the total returns value of £999.16 is a penny higher than the previously calculated value as this quicker method only involves rounding the final answer, and not rounding at each individual step.
In algebraic terms the OM for the Yankee bet is given by:
In the days before software became available for use by bookmakers and those settling bets in Licensed Betting Offices (LBOs) this method was virtually de rigueur for saving time and avoiding the multiple repetitious calculations necessary in settling bets of the full cover type.
Up and down
Round Robin
A Round Robin with 3 winners is calculated as a Trixie plus three Up and Down bets with 2 winners in each.
A Round Robin with 2 winners is calculated as a double plus one Up and Down bet with 2 winners plus two Up and Down bets with 1 winner in each.
A Round Robin with 1 winner is calculated as two Up and Down bets with one winner in each.
Flag and Super Flag bets may be calculated in a similar manner as above using the appropriate full cover bet (if sufficient winners) together with the required number of 2 winner- and 1 winner Up and Down bets.
Note: Expert bet settlers before the introduction of bet-settling software would have invariably used an algebraic-type method together with a simple calculator to determine the return on a bet (see below).
If a, b, c, d... represent the decimal odds, i.e. (fractional odds + 1), then an 'odds multiplier' OM can be calculated algebraically by multiplying the expressions (a + 1), (b + 1), (c + 1), ... etc. together in the required manner and adding or subtracting additional components. If required, (decimal odds + 1) may be replaced by (fractional odds + 2). [1] : 166 [2] : 169-176
In poker, pot odds are the ratio of the current size of the pot to the cost of a contemplated call. Pot odds are compared to the odds of winning a hand with a future card in order to estimate the call's expected value. The purpose of this is to statistically guide a player's decision between the options of call or fold. Raising is an alternative to place this decision on the opponent.
Parimutuel betting or pool betting is a betting system in which all bets of a particular type are placed together in a pool; taxes and the "house-take" or "vigorish" are deducted, and payoff odds are calculated by sharing the pool among all winning bets. In some countries it is known as the tote after the totalisator, which calculates and displays bets already made.
Spread betting is any of various types of wagering on the outcome of an event where the pay-off is based on the accuracy of the wager, rather than a simple "win or lose" outcome, such as fixed-odds betting or parimutuel betting.
Fixed-odds betting is a form of gambling where individuals place bets on the outcome of an event, such as sports matches or horse races, at predetermined odds. In fixed-odds betting, the odds are fixed and determined at the time of placing the bet. These odds reflect the likelihood of a particular outcome occurring. If the bettor's prediction is correct, they receive a payout based on the fixed odds. This means that the potential winnings are known at the time of placing the bet, regardless of any changes in the odds leading up to the event.
In probability theory, odds provide a measure of the likelihood of a particular outcome. When specific events are equally likely, odds are calculated as the ratio of the number of events that produce that outcome to the number that do not. Odds are commonly used in gambling and statistics.
A betting exchange is a marketplace for customers to bet on the outcome of discrete events. Betting exchanges offer the same opportunities to bet as a bookmaker with a few differences. Gamblers can buy and sell the outcome, and they can trade in real-time throughout the event, either to cut their losses or lock in profit. Bookmaker operators generate revenue by offering less efficient odds. Betting exchanges normally generate revenue by charging a small commission on winning bets.
A martingale is a class of betting strategies that originated from and were popular in 18th-century France. The simplest of these strategies was designed for a game in which the gambler wins the stake if a coin comes up heads and loses if it comes up tails. The strategy had the gambler double the bet after every loss, so that the first win would recover all previous losses plus win a profit equal to the original stake. Thus the strategy is an instantiation of the St. Petersburg paradox.
Vigorish is the fee charged by a bookmaker for accepting a gambler's wager. In American English, it can also refer to the interest owed a loanshark in consideration for credit. The term came to English usage via Yiddish slang which was itself a loanword from Russian.
In gambling, economics, and the philosophy of probability, a Dutch book or lock is a set of odds and bets that ensures a guaranteed profit. It is generally used as a thought experiment to motivate Von Neumann–Morgenstern axioms or the axioms of probability by showing they are equivalent to philosophical coherence or Pareto efficiency.
Sport Select is a group of sports betting games offered by Canada's lottery corporations. In Quebec, the program is known as Pari sportif; in Ontario and Atlantic Canada, it is known as Pro-Line while in British Columbia, it is known as Sports Action. However, the rules for the games are similar in all provinces. Initially created to offer betting primarily on the North American major professional sports leagues, Sport Select has expanded to offer betting on competitions such as the English Premier League and college sports.
Sports betting is the activity of predicting sports results and placing a wager on the outcome.
The Australian and New Zealand punting glossary explains some of the terms, jargon and slang which are commonly used and heard on Australian and New Zealand racecourses, in TABs, on radio, and in the horse racing media. Some terms are peculiar to Australia, such as references to bookmakers, but most are used in both countries.
In horse racing and greyhound racing, the starting price (SP) is the odds prevailing on a particular entry in the on-course fixed-odds betting market at the time a race begins. The method by which SPs are set for each runner varies in different countries but is generally by consensus of an appointed panel on the basis of their observations of the fluctuation in prices at the racetrack.
Asian handicap betting is a form of betting on football in which teams are handicapped according to their form so that a stronger team must win by more goals for a bet on them to win. The system originated in Indonesia and gained popularity in the early 21st century. It is a form of spread betting. Handicaps typically range from one-quarter goal to several goals, in increments of half- or even quarter-goals.
A parlay, accumulator, combo bet, or multi is a single bet that links together two or more individual wagers, usually seen in sports betting. Winning the parlay is dependent on all of those wagers winning together. If any of the bets in the parlay lose, the entire parlay loses. If any of the plays in the parlay ties, or "pushes", the parlay reverts to a lower number of wagers with the payout odds reducing accordingly. Parlay bets are high-risk, high-reward; linking the possibilities drastically reduces the chance of the bet paying off overall. The benefit of the parlay is that there are much higher pay-offs, although as usual, casinos and bookkeepers offering parlays often exploit the poor calculation of gamblers by not increasing the pay-out as much as the odds truly demand, with the effect of the house edge increasing in parlays.
An each-way bet is a wager offered by bookmakers consisting of two separate bets: a win bet and a place bet. For the win part of the bet to give a return, the selection must win, or finish first, in the event. For the place part of the bet to give a return, the selection must either win or finish in one of the predetermined places for the event, such as first place or second place. The odds paid on the place part of the bet are usually a fraction of the win odds. The trade-off being that one has a greater chance of making one's bet in trade for getting less payoff for doing so. Examples are domestic football knockout competitions where the quoted place terms may be 1⁄2.
In gambling, Dutching is sharing the risk of losing across a number of runners by backing more than one selection in a race or event. One needs to calculate the correct stake to place on each selection so that the return is the same if any of them wins. Although not foolproof, because handicapping is still involved, there have been successful bettors throughout history who have applied this system. This is not to be confused with what constitutes a Dutch book which is when a bookmaker goes overbroke.
The Tote is a British gambling company founded in 1928. It is one of the world’s largest pool betting operators. Its product offering also includes sports betting and online casino. Business operations are led from its headquarters in Wigan.
This is a non-exhaustive list of traditional and popular bets offered by bookmakers in the United Kingdom. The 'multiple-selection' bets in particular are most often associated with horse racing selections but since the advent of fixed-odds betting on football matches some punters use these traditional combination bets for football selections as well.
Betting on horse racing or horse betting commonly occurs at many horse races. Modern horse betting started in Great Britain in the early 1600s during the reign of King James I. Gamblers can stake money on the final placement of the horses taking part in a race. Gambling on horses is, however, prohibited at some racetracks. For example, because of a law passed in 1951, betting is illegal in Springdale Race Course, home of the nationally renowned Toronto-Dominion Bank Carolina Cup and Colonial Cup Steeplechase in Camden, South Carolina.