Martingale (betting system)

Last updated

A martingale is a class of betting strategies that originated from and were popular in 18th-century France. The simplest of these strategies was designed for a game in which the gambler wins the stake if a coin comes up heads and loses if it comes up tails. The strategy had the gambler double the bet after every loss, so that the first win would recover all previous losses plus win a profit equal to the original stake. Thus the strategy is an instantiation of the St. Petersburg paradox.

Contents

Since a gambler will almost surely eventually flip heads, the martingale betting strategy is certain to make money for the gambler provided they have infinite wealth and there is no limit on money earned in a single bet. However, no gambler has infinite wealth, and the exponential growth of the bets can bankrupt unlucky gamblers who choose to use the martingale, causing a catastrophic loss. Despite the fact that the gambler usually wins a small net reward, thus appearing to have a sound strategy, the gambler's expected value remains zero because the small probability that the gambler will suffer a catastrophic loss exactly balances with the expected gain. In a casino, the expected value is negative, due to the house's edge. Additionally, as the likelihood of a string of consecutive losses is higher than common intuition suggests, martingale strategies can bankrupt a gambler quickly.

The martingale strategy has also been applied to roulette, as the probability of hitting either red or black is close to 50%. [1]

Intuitive analysis

The fundamental reason why all martingale-type betting systems fail is that no amount of information about the results of past bets can be used to predict the results of a future bet with accuracy better than chance. In mathematical terminology, this corresponds to the assumption that the win–loss outcomes of each bet are independent and identically distributed random variables, an assumption which is valid in many realistic situations. [2] It follows from this assumption that the expected value of a series of bets is equal to the sum, over all bets that could potentially occur in the series, of the expected value of a potential bet times the probability that the player will make that bet. In most casino games, the expected value of any individual bet is negative, so the sum of many negative numbers will also always be negative.

The martingale strategy fails even with unbounded stopping time, as long as there is a limit on earnings or on the bets (which is also true in practice). [3] It is only with unbounded wealth, bets and time that it could be argued that the martingale becomes a winning strategy.

Mathematical analysis

The impossibility of winning over the long run, given a limit of the size of bets or a limit in the size of one's bankroll or line of credit, is proven by the optional stopping theorem. [3]

However, without these limits, the martingale betting strategy is certain to make money for the gambler because the chance of at least one coin flip coming up heads approaches one as the number of coin flips approaches infinity.

Mathematical analysis of a single round

Let one round be defined as a sequence of consecutive losses followed by either a win, or bankruptcy of the gambler. After a win, the gambler "resets" and is considered to have started a new round. A continuous sequence of martingale bets can thus be partitioned into a sequence of independent rounds. Following is an analysis of the expected value of one round.

Let q be the probability of losing (e.g. for American double-zero roulette, it is 20/38 for a bet on black or red). Let B be the amount of the initial bet. Let n be the finite number of bets the gambler can afford to lose.

The probability that the gambler will lose all n bets is qn. When all bets lose, the total loss is

The probability the gambler does not lose all n bets is 1  qn. In all other cases, the gambler wins the initial bet (B.) Thus, the expected profit per round is

Whenever q > 1/2, the expression 1  (2q)n < 0 for all n > 0. Thus, for all games where a gambler is more likely to lose than to win any given bet, that gambler is expected to lose money, on average, each round. Increasing the size of wager for each round per the martingale system only serves to increase the average loss.

Suppose a gambler has a 63-unit gambling bankroll. The gambler might bet 1 unit on the first spin. On each loss, the bet is doubled. Thus, taking k as the number of preceding consecutive losses, the player will always bet 2k units.

With a win on any given spin, the gambler will net 1 unit over the total amount wagered to that point. Once this win is achieved, the gambler restarts the system with a 1 unit bet.

With losses on all of the first six spins, the gambler loses a total of 63 units. This exhausts the bankroll and the martingale cannot be continued.

In this example, the probability of losing the entire bankroll and being unable to continue the martingale is equal to the probability of 6 consecutive losses: (10/19)6 = 2.1256%. The probability of winning is equal to 1 minus the probability of losing 6 times: 1  (10/19)6 = 97.8744%.

The expected amount won is (1 × 0.978744) = 0.978744.
The expected amount lost is (63 × 0.021256)= 1.339118.
Thus, the total expected value for each application of the betting system is (0.978744  1.339118) = −0.360374 .

In a unique circumstance, this strategy can make sense. Suppose the gambler possesses exactly 63 units but desperately needs a total of 64. Assuming q > 1/2 (it is a real casino) and he may only place bets at even odds, his best strategy is bold play: at each spin, he should bet the smallest amount such that if he wins he reaches his target immediately, and if he does not have enough for this, he should simply bet everything. Eventually he either goes bust or reaches his target. This strategy gives him a probability of 97.8744% of achieving the goal of winning one unit vs. a 2.1256% chance of losing all 63 units, and that is the best probability possible in this circumstance. [4] However, bold play is not always the optimal strategy for having the biggest possible chance to increase an initial capital to some desired higher amount. If the gambler can bet arbitrarily small amounts at arbitrarily long odds (but still with the same expected loss of 10/19 of the stake at each bet), and can only place one bet at each spin, then there are strategies with above 98% chance of attaining his goal, and these use very timid play unless the gambler is close to losing all his capital, in which case he does switch to extremely bold play. [5]

Alternative mathematical analysis

The previous analysis calculates expected value, but we can ask another question: what is the chance that one can play a casino game using the martingale strategy, and avoid the losing streak long enough to double one's bankroll?

As before, this depends on the likelihood of losing 6 roulette spins in a row assuming we are betting red/black or even/odd. Many gamblers believe that the chances of losing 6 in a row are remote, and that with a patient adherence to the strategy they will slowly increase their bankroll.

In reality, the odds of a streak of 6 losses in a row are much higher than many people intuitively believe. Psychological studies have shown that since people know that the odds of losing 6 times in a row out of 6 plays are low, they incorrectly assume that in a longer string of plays the odds are also very low. In fact, while the chance of losing 6 times in a row in 6 plays is a relatively low 1.8% on a single-zero wheel, the probability of losing 6 times in a row (i.e. encountering a streak of 6 losses) at some point during a string of 200 plays is approximately 84%. Even if the gambler can tolerate betting ~1,000 times their original bet, a streak of 10 losses in a row has an ~11% chance of occurring in a string of 200 plays. Such a loss streak would likely wipe out the bettor, as 10 consecutive losses using the martingale strategy means a loss of 1,023x the original bet.

These unintuitively risky probabilities raise the bankroll requirement for "safe" long-term martingale betting to infeasibly high numbers. To have an under 10% chance of failing to survive a long loss streak during 5,000 plays, the bettor must have enough to double their bets for 15 losses. This means the bettor must have over 65,500 (2^15-1 for their 15 losses and 2^15 for their 16th streak-ending winning bet) times their original bet size. Thus, a player making 10 unit bets would want to have over 655,000 units in their bankroll (and still have a ~5.5% chance of losing it all during 5,000 plays).

When people are asked to invent data representing 200 coin tosses, they often do not add streaks of more than 5 because they believe that these streaks are very unlikely. [6] This intuitive belief is sometimes referred to as the representativeness heuristic.

Anti-martingale

In a classic martingale betting style, gamblers increase bets after each loss in hopes that an eventual win will recover all previous losses. The anti-martingale approach, also known as the reverse martingale, instead increases bets after wins, while reducing them after a loss. The perception is that the gambler will benefit from a winning streak or a "hot hand", while reducing losses while "cold" or otherwise having a losing streak. As the single bets are independent from each other (and from the gambler's expectations), the concept of winning "streaks" is merely an example of gambler's fallacy, and the anti-martingale strategy fails to make any money. [7]

See also

Related Research Articles

<span class="mw-page-title-main">Casino game</span> Types of casino games

Games available in most casinos are commonly called casino games. In a casino game, the players gamble cash or casino chips on various possible random outcomes or combinations of outcomes. Casino games are also available in online casinos, where permitted by law. Casino games can also be played outside of casinos for entertainment purposes, like in parties or in school competitions, on machines that simulate gambling.

<span class="mw-page-title-main">Craps</span> Dice game

Craps is a dice game in which players bet on the outcomes of the roll of a pair of dice. Players can wager money against each other or against a bank. Because it requires little equipment, "street craps" can be played in informal settings. While shooting craps, players may use slang terminology to place bets and actions.

<span class="mw-page-title-main">Gambling</span> Wagering of money on a game of chance or event with an uncertain outcome

Gambling is the wagering of something of value on a random event with the intent of winning something else of value, where instances of strategy are discounted. Gambling thus requires three elements to be present: consideration, risk (chance), and a prize. The outcome of the wager is often immediate, such as a single roll of dice, a spin of a roulette wheel, or a horse crossing the finish line, but longer time frames are also common, allowing wagers on the outcome of a future sports contest or even an entire sports season.

The gambler's fallacy, also known as the Monte Carlo fallacy or the fallacy of the maturity of chances, is the belief that, if an event has occurred more frequently than expected, it is less likely to happen again in the future. The fallacy is commonly associated with gambling, where it may be believed, for example, that the next dice roll is more than usually likely to be six because there have recently been fewer than the expected number of sixes.

<span class="mw-page-title-main">Roulette</span> Casino game of chance

Roulette is a casino game which was likely developed from the Italian game Biribi. In the game, a player may choose to place a bet on a single number, various groupings of numbers, the color red or black, whether the number is odd or even, or if the number is high or low.

Spread betting is any of various types of wagering on the outcome of an event where the pay-off is based on the accuracy of the wager, rather than a simple "win or lose" outcome, such as fixed-odds betting or parimutuel betting.

Fixed-odds betting is a form of gambling where individuals place bets on the outcome of an event, such as sports matches or horse races, at predetermined odds. In fixed-odds betting, the odds are fixed and determined at the time of placing the bet. These odds reflect the likelihood of a particular outcome occurring. If the bettor's prediction is correct, they receive a payout based on the fixed odds. This means that the potential winnings are known at the time of placing the bet, regardless of any changes in the odds leading up to the event.

In probability theory, odds provide a measure of the likelihood of a particular outcome. When specific events are equally likely, odds are calculated as the ratio of the number of events that produce that outcome to the number that do not. Odds are commonly used in gambling and statistics.

<span class="mw-page-title-main">Martingale (probability theory)</span> Model in probability theory

In probability theory, a martingale is a sequence of random variables for which, at a particular time, the conditional expectation of the next value in the sequence is equal to the present value, regardless of all prior values.

<span class="mw-page-title-main">Card counting</span> Blackjack strategy used to determine advantage in upcoming hands

Card counting is a blackjack strategy used to determine whether the player or the dealer has an advantage on the next hand.

In statistics, gambler's ruin is the fact that a gambler playing a game with negative expected value will eventually go broke, regardless of his betting system.

<span class="mw-page-title-main">St. Petersburg paradox</span> Paradox involving a game with repeated coin flipping

The St. Petersburg paradox or St. Petersburg lottery is a paradox involving the game of flipping a coin where the expected payoff of the theoretical lottery game approaches infinity but nevertheless seems to be worth only a very small amount to the participants. The St. Petersburg paradox is a situation where a naïve decision criterion that takes only the expected value into account predicts a course of action that presumably no actual person would be willing to take. Several resolutions to the paradox have been proposed, including the impossible amount of money a casino would need to continue the game indefinitely.

A betting strategy is a structured approach to gambling, in the attempt to produce a profit. To be successful, the system must change the house edge into a player advantage — which is impossible for pure games of probability with fixed odds, akin to a perpetual motion machine. Betting systems are often predicated on statistical analysis.

<span class="mw-page-title-main">Kelly criterion</span> Formula for bet sizing that maximizes the expected logarithmic value

In probability theory, the Kelly criterion is a formula for sizing a bet. The Kelly bet size is found by maximizing the expected value of the logarithm of wealth, which is equivalent to maximizing the expected geometric growth rate. Assuming that the expected returns are known, the Kelly criterion leads to higher wealth than any other strategy in the long run. J. L. Kelly Jr, a researcher at Bell Labs, described the criterion in 1956.

<span class="mw-page-title-main">Casino War</span> Casino table game

Casino War is a proprietary casino table game based on the game of War. It is distributed by Shuffle Master, a division of Scientific Games. The game is one of the most easily understood casino card games.

The mathematics of gambling is a collection of probability applications encountered in games of chance and can get included in game theory. From a mathematical point of view, the games of chance are experiments generating various types of aleatory events, and it is possible to calculate by using the properties of probability on a finite space of possibilities.

The Labouchère system, also called the cancellation system or split martingale, is a gambling strategy used in roulette. The user of such a strategy decides before playing how much money they want to win, and writes down a list of positive numbers that sum to the predetermined amount. With each bet, the player stakes an amount equal to the sum of the first and last numbers on the list. If only one number remains, that number is the amount of the stake. If the bet is successful, the two amounts are removed from the list. If the bet is unsuccessful, the amount lost is appended to the end of the list. This process continues until either the list is completely crossed out, at which point the desired amount of money has been won, or until the player runs out of money to wager. The system is named for British politician and journalist Henry Labouchère, who originally devised the strategy.

In probability theory, Proebsting's paradox is an argument that appears to show that the Kelly criterion can lead to ruin. Although it can be resolved mathematically, it raises some interesting issues about the practical application of Kelly, especially in investing. It was named and first discussed by Edward O. Thorp in 2008. The paradox was named for Todd Proebsting, its creator.

'Due-column Betting' is a type of fixed-profit betting strategy whereby a bettor increases the amount he wagers on a single proposition after each successive loss. According to this system, the bettor determines a target profit before he begins betting. Then he increases his bet on propositions following a loss in such a way that a win will recover the sum of all amounts he lost from his preceding bets plus gain him his predetermined profit.

Oscar's Grind is a betting strategy used by gamblers on wagers where the outcome is evenly distributed between two results of equal value. It is an archetypal positive progression strategy. It is also called Hoyle's Press. In German and French, it is often referred to as the Pluscoup Progression. It was first documented by Allan Wilson in his 1965 book, The Casino Gambler's Guide. This progression is based on calculating the size of bets so that in the event of a losing streak, if and when a same-length winning streak occurs, a profit is obtained. The main concept is that there are periods of many wins and periods of many losses. Losses and wins often come in streaks. Ideally, bets are kept low on losing streaks and increased on winning streaks, which hopefully will follow.

References

  1. Williams, Leighton Vaughan (2021-09-15). Probability, Choice, and Reason. CRC Press. ISBN   978-1-000-45887-9.
  2. Ottaviani, Marco; Sørensen, Peter Norman (2010). "Noise, Information, and the Favorite-Longshot Bias in Parimutuel Predictions". American Economic Journal: Microeconomics. 2 (1): 58–85. ISSN   1945-7669. JSTOR   25760376.
  3. 1 2 Michael Mitzenmacher; Eli Upfal (2005), Probability and computing: randomized algorithms and probabilistic analysis, Cambridge University Press, p. 298, ISBN   978-0-521-83540-4, archived from the original on October 13, 2015
  4. Lester E. Dubins; Leonard J. Savage (1965), How to gamble if you must: inequalities for stochastic processes, McGraw Hill
  5. Larry Shepp (2006), Bold play and the optimal policy for Vardi's casino, pp 150–156 in: Random Walk, Sequential Analysis and Related Topics, World Scientific, doi:10.1142/9789812772558_0010
  6. Martin, Frank A. (February 2009). "What were the Odds of Having Such a Terrible Streak at the Casino?" (PDF). WizardOfOdds.com. Retrieved 31 March 2012.
  7. "Martingale Strategy and Averaging Down | What You Need to Know". capital.com. Retrieved 2024-03-11.