Theoretical motivation for general relativity

Last updated

A theoretical motivation for general relativity, including the motivation for the geodesic equation and the Einstein field equation, can be obtained from special relativity by examining the dynamics of particles in circular orbits about the Earth. A key advantage in examining circular orbits is that it is possible to know the solution of the Einstein Field Equation a priori . This provides a means to inform and verify the formalism.

Contents

General relativity addresses two questions:

  1. How does the curvature of spacetime affect the motion of matter?
  2. How does the presence of matter affect the curvature of spacetime?

The former question is answered with the geodesic equation. The second question is answered with the Einstein field equation. The geodesic equation and the field equation are related through a principle of least action. The motivation for the geodesic equation is provided in the section Geodesic equation for circular orbits. The motivation for the Einstein field equation is provided in the section Stress–energy tensor.

Geodesic equation for circular orbits

Kinetics of circular orbits

World line of a circular orbit about the Earth depicted in two spatial dimensions X and Y (the plane of the orbit) and a time dimension, usually put as the vertical axis. Note that the orbit about the Earth is a circle in space, but its worldline is a helix in spacetime. 060322 helix.svg
World line of a circular orbit about the Earth depicted in two spatial dimensions X and Y (the plane of the orbit) and a time dimension, usually put as the vertical axis. Note that the orbit about the Earth is a circle in space, but its worldline is a helix in spacetime.

For definiteness consider a circular Earth orbit (helical world line) of a particle. The particle travels with speed v. An observer on Earth sees that length is contracted in the frame of the particle. A measuring stick traveling with the particle appears shorter to the Earth observer. Therefore, the circumference of the orbit, which is in the direction of motion appears longer than times the diameter of the orbit. [1]

In special relativity the 4-proper-velocity of the particle in the inertial (non-accelerating) frame of the earth is

where c is the speed of light, is the 3-velocity, and is

.

The magnitude of the 4-velocity vector is always constant

where we are using a Minkowski metric

.

The magnitude of the 4-velocity is therefore a Lorentz scalar.

The 4-acceleration in the Earth (non-accelerating) frame is

where is c times the proper time interval measured in the frame of the particle. This is related to the time interval in the Earth's frame by

.

Here, the 3-acceleration for a circular orbit is

where is the angular velocity of the rotating particle and is the 3-position of the particle.

The magnitude of the 4-velocity is constant. This implies that the 4-acceleration must be perpendicular to the 4-velocity. The inner product of the 4-acceleration and the 4-velocity is therefore always zero. The inner product is a Lorentz scalar.

Curvature of spacetime: Geodesic equation

The equation for the acceleration can be generalized, yielding the geodesic equation

where is the 4-position of the particle and is the curvature tensor given by

where is the Kronecker delta function, and we have the constraints

and

.

It is easily verified that circular orbits satisfy the geodesic equation. The geodesic equation is actually more general. Circular orbits are a particular solution of the equation. Solutions other than circular orbits are permissible and valid.

Ricci curvature tensor and trace

The Ricci curvature tensor is a special curvature tensor given by the contraction

.

The trace of the Ricci tensor, called the scalar curvature, is

.

The geodesic equation in a local coordinate system

Circular orbits at the same radius General relativity rdj 3.png
Circular orbits at the same radius

Consider the situation in which there are now two particles in nearby circular polar orbits of the Earth at radius and speed .

The particles execute simple harmonic motion about the Earth and with respect to each other. They are at their maximum distance from each other as they cross the equator. Their trajectories intersect at the poles.

Imagine a spacecraft co-moving with one of the particles. The ceiling of the craft, the direction, coincides with the direction. The front of the craft is in the direction, and the direction is to the left of the craft. The spacecraft is small compared with the size of the orbit so that the local frame is a local Lorentz frame. The 4-separation of the two particles is given by . In the local frame of the spacecraft the geodesic equation is given by

where

and

is the curvature tensor in the local frame.

Geodesic equation as a covariant derivative

The equation of motion for a particle in flat spacetime and in the absence of forces is

.

If we require a particle to travel along a geodesic in curved spacetime, then the analogous expression in curved spacetime is

where the derivative on the left is the covariant derivative, which is the generalization of the normal derivative to a derivative in curved spacetime. Here

is a Christoffel symbol.

The curvature is related to the Christoffel symbol by

.

Metric tensor in the local frame

The interval in the local frame is

where

is the angle with the axis (longitude) and
is the angle with the axis (latitude).

This gives a metric of

in the local frame.

The inverse of the metric tensor is defined such that

where the term on the right is the Kronecker delta.

The transformation of the infinitesimal 4-volume is

where g is the determinant of the metric tensor.

The differential of the determinant of the metric tensor is

.

The relationship between the Christoffel symbols and the metric tensor is

.

Principle of least action in general relativity

The principle of least action states that the world line between two events in spacetime is that world line that minimizes the action between the two events. In classical mechanics the principle of least action is used to derive Newton's laws of motion and is the basis for Lagrangian dynamics. In relativity it is expressed as

between events 1 and 2 is a minimum. Here S is a scalar and

is known as the Lagrangian density. The Lagrangian density is divided into two parts, the density for the orbiting particle and the density of the gravitational field generated by all other particles including those comprising the Earth,

.

In curved spacetime, the "shortest" world line is that geodesic that minimizes the curvature along the geodesic. The action then is proportional to the curvature of the world line. Since S is a scalar, the scalar curvature is the appropriate measure of curvature. The action for the particle is therefore

where is an unknown constant. This constant will be determined by requiring the theory to reduce to Newton's law of gravitation in the nonrelativistic limit.

The Lagrangian density for the particle is therefore

.

The action for the particle and the Earth is

.

Thus the world line that lies on the surface of the sphere of radius r by varying the metric tensor. Minimization and neglect of terms that disappear on the boundaries, including terms second order in the derivative of g, yields

where [2]

is the Hilbert stress–energy tensor of the field generated by the Earth.

The relationship, to within an unknown constant factor, between the stress-energy and the curvature is

.

Stress–energy tensor

Newton's law of gravitation

Diagram 1. Changing views of spacetime along the world line of a rapidly accelerating observer. In this animation, the dashed line is the spacetime trajectory ("world line") of a particle. The balls are placed at regular intervals of proper time along the world line. The solid diagonal lines are the light cones for the observer's current event, and intersect at that event. The small dots are other arbitrary events in the spacetime. For the observer's current instantaneous inertial frame of reference, the vertical direction indicates the time and the horizontal direction indicates distance. The slope of the world line (deviation from being vertical) is the velocity of the particle on that section of the world line. So at a bend in the world line the particle is being accelerated. Note how the view of spacetime changes when the observer accelerates, changing the instantaneous inertial frame of reference. These changes are governed by the Lorentz transformations. Also note that: * the balls on the world line before/after future/past accelerations are more spaced out due to time dilation. * events which were simultaneous before an acceleration are at different times afterwards (due to the relativity of simultaneity), * events pass through the light cone lines due to the progression of proper time, but not due to the change of views caused by the accelerations, and * the world line always remains within the future and past light cones of the current event. Lorentz transform of world line.gif
Diagram 1. Changing views of spacetime along the world line of a rapidly accelerating observer. In this animation, the dashed line is the spacetime trajectory ("world line") of a particle. The balls are placed at regular intervals of proper time along the world line. The solid diagonal lines are the light cones for the observer's current event, and intersect at that event. The small dots are other arbitrary events in the spacetime. For the observer's current instantaneous inertial frame of reference, the vertical direction indicates the time and the horizontal direction indicates distance. The slope of the world line (deviation from being vertical) is the velocity of the particle on that section of the world line. So at a bend in the world line the particle is being accelerated. Note how the view of spacetime changes when the observer accelerates, changing the instantaneous inertial frame of reference. These changes are governed by the Lorentz transformations. Also note that: * the balls on the world line before/after future/past accelerations are more spaced out due to time dilation. * events which were simultaneous before an acceleration are at different times afterwards (due to the relativity of simultaneity), * events pass through the light cone lines due to the progression of proper time, but not due to the change of views caused by the accelerations, and * the world line always remains within the future and past light cones of the current event.

Newton's Law of Gravitation in non-relativistic mechanics states that the acceleration on an object of mass due to another object of mass is equal to

where is the gravitational constant, is a vector from mass to mass and is the magnitude of that vector. The time t is scaled with the speed of light c

.

The acceleration is independent of .

For definiteness. consider a particle of mass orbiting in the gravitational field of the Earth with mass . The law of gravitation can be written

where is the average mass density inside a sphere of radius .

Gravitational force in terms of the 00 component of the stress–energy tensor

Newton's law can be written

.

where is the volume of a sphere of radius . The quantity will be recognized from special relativity as the rest energy of the large body, the Earth. This is the sum of the rest energies of all the particles that compose Earth. The quantity in the parentheses is then the average rest energy density of a sphere of radius about the Earth. The gravitational field is proportional to the average energy density within a radius r. This is the 00 component of the stress–energy tensor in relativity for the special case in which all the energy is rest energy. More generally

where

and is the velocity of particle i making up the Earth and in the rest mass of particle i. There are N particles altogether making up the Earth.

Relativistic generalization of the energy density

The components of the stress-energy tensor StressEnergyTensor.svg
The components of the stress–energy tensor

There are two simple relativistic entities that reduce to the 00 component of the stress–energy tensor in the nonrelativistic limit

and the trace

where is the 4-velocity.

The 00 component of the stress–energy tensor can be generalized to the relativistic case as a linear combination of the two terms

where

4-acceleration due to gravity

The 4-acceleration due to gravity can be written

.

Unfortunately, this acceleration is nonzero for as is required for circular orbits. Since the magnitude of the 4-velocity is constant, it is only the component of the force perpendicular to the 4-velocity that contributes to the acceleration. We must therefore subtract off the component of force parallel to the 4-velocity. This is known as Fermi–Walker transport. [3] In other words,

.

This yields

.

The force in the local frame is

.

Einstein field equation

Two-dimensional visualization of space-time distortion. The presence of matter changes the geometry of spacetime, this (curved) geometry being interpreted as gravity. Spacetime curvature.png
Two-dimensional visualization of space-time distortion. The presence of matter changes the geometry of spacetime, this (curved) geometry being interpreted as gravity.

The Einstein field equation is obtained [4] by equating the acceleration required for circular orbits with the acceleration due to gravity

.

This is the relationship between curvature of spacetime and the stress–energy tensor.

The Ricci tensor becomes

.

The trace of the Ricci tensor is

.

Comparison of the Ricci tensor with the Ricci tensor calculated from the principle of least action, Theoretical motivation for general relativity#Principle of least action in general relativity identifying the stress–energy tensor with the Hilbert stress-energy, and remembering that A+B=1 removes the ambiguity in A, B, and C.

and

.

This gives

.

The field equation can be written

where

.

This is the Einstein field equation that describes curvature of spacetime that results from stress-energy density. This equation, along with the geodesic equation have been motivated by the kinetics and dynamics of a particle orbiting the Earth in a circular orbit. They are true in general.

Solving the Einstein field equation

Solving the Einstein field equation requires an iterative process. The solution is represented in the metric tensor

.

Typically there is an initial guess for the tensor. The guess is used to calculate Christoffel symbols, which are used to calculate the curvature. If the Einstein field equation is not satisfied, the process is repeated.

Solutions occur in two forms, vacuum solutions and non-vacuum solutions. A vacuum solution is one in which the stress–energy tensor is zero. The relevant vacuum solution for circular orbits is the Schwarzschild metric. There are also a number of exact solutions that are non-vacuum solutions, solutions in which the stress tensor is non-zero.

Solving the geodesic equation

Solving the geodesic equations requires knowledge of the metric tensor obtained through the solution of the Einstein field equation. Either the Christoffel symbols or the curvature are calculated from the metric tensor. The geodesic equation is then integrated with the appropriate boundary conditions.

Electrodynamics in curved spacetime

Maxwell's equations, the equations of electrodynamics, in curved spacetime are a generalization of Maxwell's equations in flat spacetime (see Formulation of Maxwell's equations in special relativity). Curvature of spacetime affects electrodynamics. Maxwell's equations in curved spacetime can be obtained by replacing the derivatives in the equations in flat spacetime with covariant derivatives. The sourced and source-free equations become (cgs units):

,

and

where is the 4-current, is the field strength tensor, is the Levi-Civita symbol, and

is the 4-gradient. Repeated indices are summed over according to Einstein summation convention. We have displayed the results in several common notations.

The first tensor equation is an expression of the two inhomogeneous Maxwell's equations, Gauss' law and the Ampère's law with Maxwell's correction. The second equation is an expression of the homogeneous equations, Faraday's law of induction and Gauss's law for magnetism.

The electromagnetic wave equation is modified from the equation in flat spacetime in two ways, the derivative is replaced with the covariant derivative and a new term that depends on the curvature appears.

where the 4-potential is defined such that

.

We have assumed the generalization of the Lorenz gauge in curved spacetime

.

See also

Related Research Articles

<span class="mw-page-title-main">Kaluza–Klein theory</span> Unified field theory

In physics, Kaluza–Klein theory is a classical unified field theory of gravitation and electromagnetism built around the idea of a fifth dimension beyond the common 4D of space and time and considered an important precursor to string theory. In their setup, the vacuum has the usual 3 dimensions of space and one dimension of time but with another microscopic extra spatial dimension in the shape of a tiny circle. Gunnar Nordström had an earlier, similar idea. But in that case, a fifth component was added to the electromagnetic vector potential, representing the Newtonian gravitational potential, and writing the Maxwell equations in five dimensions.

In particle physics, the Dirac equation is a relativistic wave equation derived by British physicist Paul Dirac in 1928. In its free form, or including electromagnetic interactions, it describes all spin-1/2 massive particles, called "Dirac particles", such as electrons and quarks for which parity is a symmetry. It is consistent with both the principles of quantum mechanics and the theory of special relativity, and was the first theory to account fully for special relativity in the context of quantum mechanics. It was validated by accounting for the fine structure of the hydrogen spectrum in a completely rigorous way. It has become vital in the building of the Standard Model.

<span class="mw-page-title-main">Stress–energy tensor</span> Tensor describing energy momentum density in spacetime

The stress–energy tensor, sometimes called the stress–energy–momentum tensor or the energy–momentum tensor, is a tensor physical quantity that describes the density and flux of energy and momentum in spacetime, generalizing the stress tensor of Newtonian physics. It is an attribute of matter, radiation, and non-gravitational force fields. This density and flux of energy and momentum are the sources of the gravitational field in the Einstein field equations of general relativity, just as mass density is the source of such a field in Newtonian gravity.

In the special theory of relativity, four-force is a four-vector that replaces the classical force.

In the general theory of relativity, the Einstein field equations relate the geometry of spacetime to the distribution of matter within it.

In differential geometry, the Einstein tensor is used to express the curvature of a pseudo-Riemannian manifold. In general relativity, it occurs in the Einstein field equations for gravitation that describe spacetime curvature in a manner that is consistent with conservation of energy and momentum.

In differential geometry, the four-gradient is the four-vector analogue of the gradient from vector calculus.

When studying and formulating Albert Einstein's theory of general relativity, various mathematical structures and techniques are utilized. The main tools used in this geometrical theory of gravitation are tensor fields defined on a Lorentzian manifold representing spacetime. This article is a general description of the mathematics of general relativity.

<span class="mw-page-title-main">Electromagnetic tensor</span> Mathematical object that describes the electromagnetic field in spacetime

In electromagnetism, the electromagnetic tensor or electromagnetic field tensor is a mathematical object that describes the electromagnetic field in spacetime. The field tensor was first used after the four-dimensional tensor formulation of special relativity was introduced by Hermann Minkowski. The tensor allows related physical laws to be written concisely, and allows for the quantization of the electromagnetic field by the Lagrangian formulation described below.

In general relativity, a geodesic generalizes the notion of a "straight line" to curved spacetime. Importantly, the world line of a particle free from all external, non-gravitational forces is a particular type of geodesic. In other words, a freely moving or falling particle always moves along a geodesic.

In physics, precisely in the study of the theory of general relativity and many alternatives to it, the post-Newtonian formalism is a calculational tool that expresses Einstein's (nonlinear) equations of gravity in terms of the lowest-order deviations from Newton's law of universal gravitation. This allows approximations to Einstein's equations to be made in the case of weak fields. Higher-order terms can be added to increase accuracy, but for strong fields, it may be preferable to solve the complete equations numerically. Some of these post-Newtonian approximations are expansions in a small parameter, which is the ratio of the velocity of the matter forming the gravitational field to the speed of light, which in this case is better called the speed of gravity. In the limit, when the fundamental speed of gravity becomes infinite, the post-Newtonian expansion reduces to Newton's law of gravity.

<span class="mw-page-title-main">Covariant formulation of classical electromagnetism</span> Ways of writing certain laws of physics

The covariant formulation of classical electromagnetism refers to ways of writing the laws of classical electromagnetism in a form that is manifestly invariant under Lorentz transformations, in the formalism of special relativity using rectilinear inertial coordinate systems. These expressions both make it simple to prove that the laws of classical electromagnetism take the same form in any inertial coordinate system, and also provide a way to translate the fields and forces from one frame to another. However, this is not as general as Maxwell's equations in curved spacetime or non-rectilinear coordinate systems.

<span class="mw-page-title-main">Maxwell's equations in curved spacetime</span> Electromagnetism in general relativity

In physics, Maxwell's equations in curved spacetime govern the dynamics of the electromagnetic field in curved spacetime or where one uses an arbitrary coordinate system. These equations can be viewed as a generalization of the vacuum Maxwell's equations which are normally formulated in the local coordinates of flat spacetime. But because general relativity dictates that the presence of electromagnetic fields induce curvature in spacetime, Maxwell's equations in flat spacetime should be viewed as a convenient approximation.

<span class="mw-page-title-main">Classical electromagnetism and special relativity</span> Relationship between relativity and pre-quantum electromagnetism

The theory of special relativity plays an important role in the modern theory of classical electromagnetism. It gives formulas for how electromagnetic objects, in particular the electric and magnetic fields, are altered under a Lorentz transformation from one inertial frame of reference to another. It sheds light on the relationship between electricity and magnetism, showing that frame of reference determines if an observation follows electric or magnetic laws. It motivates a compact and convenient notation for the laws of electromagnetism, namely the "manifestly covariant" tensor form.

In continuum mechanics, a compatible deformation tensor field in a body is that unique tensor field that is obtained when the body is subjected to a continuous, single-valued, displacement field. Compatibility is the study of the conditions under which such a displacement field can be guaranteed. Compatibility conditions are particular cases of integrability conditions and were first derived for linear elasticity by Barré de Saint-Venant in 1864 and proved rigorously by Beltrami in 1886.

<span class="mw-page-title-main">Relativistic Lagrangian mechanics</span> Mathematical formulation of special and general relativity

In theoretical physics, relativistic Lagrangian mechanics is Lagrangian mechanics applied in the context of special relativity and general relativity.

<span class="mw-page-title-main">Gluon field strength tensor</span> Second rank tensor in quantum chromodynamics

In theoretical particle physics, the gluon field strength tensor is a second order tensor field characterizing the gluon interaction between quarks.

The optical metric was defined by German theoretical physicist Walter Gordon in 1923 to study the geometrical optics in curved space-time filled with moving dielectric materials.

<span class="mw-page-title-main">Joos–Weinberg equation</span> Equation for arbitrary spin particles

In relativistic quantum mechanics and quantum field theory, the Joos–Weinberg equation is a relativistic wave equation applicable to free particles of arbitrary spin j, an integer for bosons or half-integer for fermions. The solutions to the equations are wavefunctions, mathematically in the form of multi-component spinor fields. The spin quantum number is usually denoted by s in quantum mechanics, however in this context j is more typical in the literature.

<span class="mw-page-title-main">Dual graviton</span> Hypothetical particle found in supergravity

In theoretical physics, the dual graviton is a hypothetical elementary particle that is a dual of the graviton under electric-magnetic duality, as an S-duality, predicted by some formulations of eleven-dimensional supergravity.

References

  1. Einstein, A. (1961). Relativity: The Special and General Theory . New York: Crown. ISBN   0-517-02961-8.
  2. Landau, L. D. & Lifshitz, E. M. (1975). Classical Theory of Fields (Fourth Revised English ed.). Oxford: Pergamon. ISBN   0-08-018176-7.
  3. Misner, Charles; Thorne, Kip S. & Wheeler, John Archibald (1973). Gravitation . San Francisco: W. H. Freeman. pp.  170, 171. ISBN   0-7167-0344-0.
  4. Landau 1975, p. 276