General covariant transformations

Last updated

In physics, general covariant transformations are symmetries of gravitation theory on a world manifold . They are gauge transformations whose parameter functions are vector fields on . From the physical viewpoint, general covariant transformations are treated as particular (holonomic) reference frame transformations in general relativity. In mathematics, general covariant transformations are defined as particular automorphisms of so-called natural fiber bundles.

Contents

Mathematical definition

Let be a fibered manifold with local fibered coordinates . Every automorphism of is projected onto a diffeomorphism of its base . However, the converse is not true. A diffeomorphism of need not give rise to an automorphism of .

In particular, an infinitesimal generator of a one-parameter Lie group of automorphisms of is a projectable vector field

on . This vector field is projected onto a vector field on , whose flow is a one-parameter group of diffeomorphisms of . Conversely, let be a vector field on . There is a problem of constructing its lift to a projectable vector field on projected onto . Such a lift always exists, but it need not be canonical. Given a connection on , every vector field on gives rise to the horizontal vector field

on . This horizontal lift yields a monomorphism of the -module of vector fields on to the -module of vector fields on , but this monomorphisms is not a Lie algebra morphism, unless is flat.

However, there is a category of above mentioned natural bundles which admit the functorial lift onto of any vector field on such that is a Lie algebra monomorphism

This functorial lift is an infinitesimal general covariant transformation of .

In a general setting, one considers a monomorphism of a group of diffeomorphisms of to a group of bundle automorphisms of a natural bundle . Automorphisms are called the general covariant transformations of . For instance, no vertical automorphism of is a general covariant transformation.

Natural bundles are exemplified by tensor bundles. For instance, the tangent bundle of is a natural bundle. Every diffeomorphism of gives rise to the tangent automorphism of which is a general covariant transformation of . With respect to the holonomic coordinates on , this transformation reads

A frame bundle of linear tangent frames in also is a natural bundle. General covariant transformations constitute a subgroup of holonomic automorphisms of . All bundles associated with a frame bundle are natural. However, there are natural bundles which are not associated with .

See also

Related Research Articles

Kaluza–Klein theory Unified field theory

In physics, Kaluza–Klein theory is a classical unified field theory of gravitation and electromagnetism built around the idea of a fifth dimension beyond the common 4D of space and time and considered an important precursor to string theory. Gunnar Nordström had an earlier, similar idea. But in that case, a fifth component was added to the electromagnetic vector potential, representing the Newtonian gravitational potential, and writing the Maxwell equations in five dimensions.

In particle physics, the Dirac equation is a relativistic wave equation derived by British physicist Paul Dirac in 1928. In its free form, or including electromagnetic interactions, it describes all spin-12 massive particles such as electrons and quarks for which parity is a symmetry. It is consistent with both the principles of quantum mechanics and the theory of special relativity, and was the first theory to account fully for special relativity in the context of quantum mechanics. It was validated by accounting for the fine details of the hydrogen spectrum in a completely rigorous way.

Riemann curvature tensor Tensor field in Riemannian geometry

In the mathematical field of differential geometry, the Riemann curvature tensor or Riemann–Christoffel tensor is the most common way used to express the curvature of Riemannian manifolds. It assigns a tensor to each point of a Riemannian manifold. It is a local invariant of Riemannian metrics which measures the failure of the second covariant derivatives to commute. A Riemannian manifold has zero curvature if and only if it is flat, i.e. locally isometric to the Euclidean space. The curvature tensor can also be defined for any pseudo-Riemannian manifold, or indeed any manifold equipped with an affine connection.

Four-vector 4-dimensional vector in relativity

In special relativity, a four-vector is an object with four components, which transform in a specific way under Lorentz transformations. Specifically, a four-vector is an element of a four-dimensional vector space considered as a representation space of the standard representation of the Lorentz group, the representation. It differs from a Euclidean vector in how its magnitude is determined. The transformations that preserve this magnitude are the Lorentz transformations, which include spatial rotations and boosts.

In the special theory of relativity, four-force is a four-vector that replaces the classical force.

In differential geometry, the Lie derivative, named after Sophus Lie by Władysław Ślebodziński, evaluates the change of a tensor field, along the flow defined by another vector field. This change is coordinate invariant and therefore the Lie derivative is defined on any differentiable manifold.

In mathematics, and especially differential geometry and gauge theory, a connection on a fiber bundle is a device that defines a notion of parallel transport on the bundle; that is, a way to "connect" or identify fibers over nearby points. The most common case is that of a linear connection on a vector bundle, for which the notion of parallel transport must be linear. A linear connection is equivalently specified by a covariant derivative, an operator that differentiates sections of the bundle along tangent directions in the base manifold, in such a way that parallel sections have derivative zero. Linear connections generalize, to arbitrary vector bundles, the Levi-Civita connection on the tangent bundle of a pseudo-Riemannian manifold, which gives a standard way to differentiate vector fields. Nonlinear connections generalize this concept to bundles whose fibers are not necessarily linear.

In mathematics, the covariant derivative is a way of specifying a derivative along tangent vectors of a manifold. Alternatively, the covariant derivative is a way of introducing and working with a connection on a manifold by means of a differential operator, to be contrasted with the approach given by a principal connection on the frame bundle – see affine connection. In the special case of a manifold isometrically embedded into a higher-dimensional Euclidean space, the covariant derivative can be viewed as the orthogonal projection of the Euclidean directional derivative onto the manifold's tangent space. In this case the Euclidean derivative is broken into two parts, the extrinsic normal component and the intrinsic covariant derivative component.

This is a glossary of some terms used in Riemannian geometry and metric geometry — it doesn't cover the terminology of differential topology.

In differential geometry, a spray is a vector field H on the tangent bundle TM that encodes a quasilinear second order system of ordinary differential equations on the base manifold M. Usually a spray is required to be homogeneous in the sense that its integral curves t→ΦHt(ξ)∈TM obey the rule ΦHt(λξ)=ΦHλt(ξ) in positive reparameterizations. If this requirement is dropped, H is called a semispray.

In differential geometry, a tensor density or relative tensor is a generalization of the tensor field concept. A tensor density transforms as a tensor field when passing from one coordinate system to another, except that it is additionally multiplied or weighted by a power W of the Jacobian determinant of the coordinate transition function or its absolute value. A distinction is made among (authentic) tensor densities, pseudotensor densities, even tensor densities and odd tensor densities. Sometimes tensor densities with a negative weight W are called tensor capacity. A tensor density can also be regarded as a section of the tensor product of a tensor bundle with a density bundle.

In physics, the algebra of physical space (APS) is the use of the Clifford or geometric algebra Cl3,0(R) of the three-dimensional Euclidean space as a model for (3+1)-dimensional spacetime, representing a point in spacetime via a paravector.

The gauge covariant derivative is a variation of the covariant derivative used in general relativity, quantum field theory and fluid dynamics. If a theory has gauge transformations, it means that some physical properties of certain equations are preserved under those transformations. Likewise, the gauge covariant derivative is the ordinary derivative modified in such a way as to make it behave like a true vector operator, so that equations written using the covariant derivative preserve their physical properties under gauge transformations.

In mathematics, a metric connection is a connection in a vector bundle E equipped with a bundle metric; that is, a metric for which the inner product of any two vectors will remain the same when those vectors are parallel transported along any curve. This is equivalent to:

In quantum field theory, gauge gravitation theory is the effort to extend Yang–Mills theory, which provides a universal description of the fundamental interactions, to describe gravity.

In differential geometry, a fibered manifold is surjective submersion of smooth manifolds YX. Locally trivial fibered manifolds are fiber bundles. Therefore, a notion of connection on fibered manifolds provides a general framework of a connection on fiber bundles.

Let YX be an affine bundle modelled over a vector bundle YX. A connection Γ on YX is called the affine connection if it as a section Γ : Y → J1Y of the jet bundle J1YY of Y is an affine bundle morphism over X. In particular, this is an affine connection on the tangent bundle TX of a smooth manifold X. (That is, the connection on an affine bundle is an example of an affine connection; it is not, however, a general definition of an affine connection. These are related but distinct concepts both unfortunately making use of the adjective "affine".)

Composite bundles play a prominent role in gauge theory with symmetry breaking, e.g., gauge gravitation theory, non-autonomous mechanics where is the time axis, e.g., mechanics with time-dependent parameters, and so on. There are the important relations between connections on fiber bundles , and .

Affine gauge theory is classical gauge theory where gauge fields are affine connections on the tangent bundle over a smooth manifold . For instance, these are gauge theory of dislocations in continuous media when , the generalization of metric-affine gravitation theory when is a world manifold and, in particular, gauge theory of the fifth force.

In mathematics and physics, acceleration is the rate of change of velocity of a curve with respect to a given linear connection. This operation provides us with a measure of the rate and direction of the "bend".

References