Spacetime topology

Last updated

Spacetime topology is the topological structure of spacetime, a topic studied primarily in general relativity. This physical theory models gravitation as the curvature of a four dimensional Lorentzian manifold (a spacetime) and the concepts of topology thus become important in analysing local as well as global aspects of spacetime. The study of spacetime topology is especially important in physical cosmology.

Contents

Types of topology

There are two main types of topology for a spacetime M.

Manifold topology

As with any manifold, a spacetime possesses a natural manifold topology. Here the open sets are the image of open sets in .

Path or Zeeman topology

Definition: [1] The topology in which a subset is open if for every timelike curve there is a set in the manifold topology such that .

It is the finest topology which induces the same topology as does on timelike curves. [2]

Properties

Strictly finer than the manifold topology. It is therefore Hausdorff, separable but not locally compact.

A base for the topology is sets of the form for some point and some convex normal neighbourhood .

( denote the chronological past and future).

Alexandrov topology

The Alexandrov topology on spacetime, is the coarsest topology such that both and are open for all subsets .

Here the base of open sets for the topology are sets of the form for some points .

This topology coincides with the manifold topology if and only if the manifold is strongly causal but it is coarser in general. [3]

Note that in mathematics, an Alexandrov topology on a partial order is usually taken to be the coarsest topology in which only the upper sets are required to be open. This topology goes back to Pavel Alexandrov.

Nowadays, the correct mathematical term for the Alexandrov topology on spacetime (which goes back to Alexandr D. Alexandrov) would be the interval topology, but when Kronheimer and Penrose introduced the term this difference in nomenclature was not as clear[ citation needed ], and in physics the term Alexandrov topology remains in use.

Planar spacetime

Events connected by light have zero separation. The plenum of spacetime in the plane is split into four quadrants, each of which has the topology of R2. The dividing lines are the trajectory of inbound and outbound photons at (0,0). The planar-cosmology topological segmentation is the future F, the past P, space left L, and space right D. The homeomorphism of F with R2 amounts to polar decomposition of split-complex numbers:

so that
is the split-complex logarithm and the required homeomorphism F → R2, Note that b is the rapidity parameter for relative motion in F.

F is in bijective correspondence with each of P, L, and D under the mappings z → –z, z → jz, and z → – j z, so each acquires the same topology. The union U = F ∪ P ∪ L ∪ D then has a topology nearly covering the plane, leaving out only the null cone on (0,0). Hyperbolic rotation of the plane does not mingle the quadrants, in fact, each one is an invariant set under the unit hyperbola group.

See also

Notes

  1. Luca Bombelli website Archived 2010-06-16 at the Wayback Machine
    • Zeeman, E.C. (1967). "The topology of Minkowski space". Topology . 6 (2): 161–170. doi:10.1016/0040-9383(67)90033-X.
  2. Penrose, Roger (1972), Techniques of Differential Topology in Relativity, CBMS-NSF Regional Conference Series in Applied Mathematics, p. 34

Related Research Articles

<span class="mw-page-title-main">Diffeomorphism</span> Isomorphism of differentiable manifolds

In mathematics, a diffeomorphism is an isomorphism of differentiable manifolds. It is an invertible function that maps one differentiable manifold to another such that both the function and its inverse are continuously differentiable.

In mathematics, a topological space is, roughly speaking, a geometrical space in which closeness is defined but cannot necessarily be measured by a numeric distance. More specifically, a topological space is a set whose elements are called points, along with an additional structure called a topology, which can be defined as a set of neighbourhoods for each point that satisfy some axioms formalizing the concept of closeness. There are several equivalent definitions of a topology, the most commonly used of which is the definition through open sets, which is easier than the others to manipulate.

This is a glossary of some terms used in the branch of mathematics known as topology. Although there is no absolute distinction between different areas of topology, the focus here is on general topology. The following definitions are also fundamental to algebraic topology, differential topology and geometric topology. For a list of terms specific to algebraic topology, see Glossary of algebraic topology.

In mathematics, a topological vector space is one of the basic structures investigated in functional analysis. A topological vector space is a vector space that is also a topological space with the property that the vector space operations are also continuous functions. Such a topology is called a vector topology and every topological vector space has a uniform topological structure, allowing a notion of uniform convergence and completeness. Some authors also require that the space is a Hausdorff space. One of the most widely studied categories of TVSs are locally convex topological vector spaces. This article focuses on TVSs that are not necessarily locally convex. Other well-known examples of TVSs include Banach spaces, Hilbert spaces and Sobolev spaces.

In mathematics, a diffeology on a set generalizes the concept of smooth charts in a differentiable manifold, declaring what the "smooth parametrizations" in the set are.

<span class="mw-page-title-main">General topology</span> Branch of topology

In mathematics, general topology is the branch of topology that deals with the basic set-theoretic definitions and constructions used in topology. It is the foundation of most other branches of topology, including differential topology, geometric topology, and algebraic topology.

<span class="mw-page-title-main">Homotopy</span> Continuous deformation between two continuous functions

In topology, a branch of mathematics, two continuous functions from one topological space to another are called homotopic if one can be "continuously deformed" into the other, such a deformation being called a homotopy between the two functions. A notable use of homotopy is the definition of homotopy groups and cohomotopy groups, important invariants in algebraic topology.

<span class="mw-page-title-main">Minkowski space</span> Spacetime used in theory of relativity

In physics, Minkowski space is the main mathematical description of spacetime in the absence of gravitation. It combines inertial space and time manifolds into a four-dimensional model.

In mathematics, more specifically topology, a local homeomorphism is a function between topological spaces that, intuitively, preserves local structure. If is a local homeomorphism, is said to be an étale space over Local homeomorphisms are used in the study of sheaves. Typical examples of local homeomorphisms are covering maps.

This is a glossary of some terms used in Riemannian geometry and metric geometry — it doesn't cover the terminology of differential topology.

In mathematics, in the subfield of geometric topology, the mapping class group is an important algebraic invariant of a topological space. Briefly, the mapping class group is a certain discrete group corresponding to symmetries of the space.

<span class="mw-page-title-main">Triangulation (topology)</span> Representation of mathematical space

In mathematics, triangulation describes the replacement of topological spaces by piecewise linear spaces, i.e. the choice of a homeomorphism in a suitable simplicial complex. Spaces being homeomorphic to a simplicial complex are called triangulable. Triangulation has various uses in different branches of mathematics, for instance in algebraic topology, in complex analysis or in modeling.

<span class="mw-page-title-main">Manifold</span> Topological space that locally resembles Euclidean space

In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an -dimensional manifold, or -manifold for short, is a topological space with the property that each point has a neighborhood that is homeomorphic to an open subset of -dimensional Euclidean space.

<span class="mw-page-title-main">Differentiable manifold</span> Manifold upon which it is possible to perform calculus

In mathematics, a differentiable manifold is a type of manifold that is locally similar enough to a vector space to allow one to apply calculus. Any manifold can be described by a collection of charts (atlas). One may then apply ideas from calculus while working within the individual charts, since each chart lies within a vector space to which the usual rules of calculus apply. If the charts are suitably compatible, then computations done in one chart are valid in any other differentiable chart.

In the mathematical field of Lorentzian geometry, a Cauchy surface is a certain kind of submanifold of a Lorentzian manifold. In the application of Lorentzian geometry to the physics of general relativity, a Cauchy surface is usually interpreted as defining an "instant of time". In the mathematics of general relativity, Cauchy surfaces provide boundary conditions for the causal structure in which the Einstein equations can be solved

In mathematical physics, global hyperbolicity is a certain condition on the causal structure of a spacetime manifold. It is called hyperbolic in analogy with the linear theory of wave propagation, where the future state of a system is specified by initial conditions. This is relevant to Albert Einstein's theory of general relativity, and potentially to other metric gravitational theories.

<span class="mw-page-title-main">Causal sets</span> Approach to quantum gravity using discrete spacetime

The causal sets program is an approach to quantum gravity. Its founding principles are that spacetime is fundamentally discrete and that spacetime events are related by a partial order. This partial order has the physical meaning of the causality relations between spacetime events.

In mathematical physics, the causal structure of a Lorentzian manifold describes the causal relationships between points in the manifold.

In the study of Lorentzian manifold spacetimes there exists a hierarchy of causality conditions which are important in proving mathematical theorems about the global structure of such manifolds. These conditions were collected during the late 1970s.

This is a glossary of properties and concepts in algebraic topology in mathematics.

References