Complex spacetime

Last updated

Complex spacetime is a mathematical framework that combines the concepts of complex numbers and spacetime in physics. In this framework, the usual real-valued coordinates of spacetime are replaced with complex-valued coordinates. This allows for the inclusion of imaginary components in the description of spacetime, which can have interesting implications in certain areas of physics, such as quantum field theory and string theory.

Contents

The notion is entirely mathematical with no physics implied, but should be seen as a tool, for instance, as exemplified by the Wick rotation.

Real and complex spaces

Mathematics

The complexification of a real vector space results in a complex vector space (over the complex number field). To "complexify" a space means extending ordinary scalar multiplication of vectors by real numbers to scalar multiplication by complex numbers. For complexified inner product spaces, the complex inner product on vectors replaces the ordinary real-valued inner product, an example of the latter being the dot product.

In mathematical physics, when we complexify a real coordinate space we create a complex coordinate space , referred to in differential geometry as a "complex manifold". The space can be related to , since every complex number constitutes two real numbers.

A complex spacetime geometry refers to the metric tensor being complex, not spacetime itself.

Physics

The Minkowski space of special relativity (SR) and general relativity (GR) is a 4 dimensional pseudo-Euclidean space. The spacetime underlying Albert Einstein's field equations, which mathematically describe gravitation, is a real 4 dimensional pseudo-Riemannian manifold.

In quantum mechanics, wave functions describing particles are complex-valued functions of real space and time variables. The set of all wavefunctions for a given system is an infinite-dimensional complex Hilbert space.

History

The notion of spacetime having more than four dimensions is of interest in its own mathematical right. Its appearance in physics can be rooted to attempts of unifying the fundamental interactions, originally gravity and electromagnetism. These ideas prevail in string theory and beyond. The idea of complex spacetime has received considerably less attention, but it has been considered in conjunction with the LorentzDirac equation and the Maxwell equations. [1] [2] Other ideas include mapping real spacetime into a complex representation space of SU(2, 2), see twistor theory. [3]

In 1919, Theodor Kaluza posted his 5-dimensional extension of general relativity, to Albert Einstein, [4] who was impressed with how the equations of electromagnetism emerged from Kaluza's theory. In 1926, Oskar Klein suggested [5] that Kaluza's extra dimension might be "curled up" into an extremely small circle, as if a circular topology is hidden within every point in space. Instead of being another spatial dimension, the extra dimension could be thought of as an angle, which created a hyper-dimension as it spun through 360°. This 5d theory is named Kaluza–Klein theory.

In 1932, Hsin P. Soh of MIT, advised by Arthur Eddington, published a theory attempting to unify gravitation and electromagnetism within a complex 4-dimensional Riemannian geometry. The line element ds2 is complex-valued, so that the real part corresponds to mass and gravitation, while the imaginary part with charge and electromagnetism. The usual space x, y, z and time t coordinates themselves are real and spacetime is not complex, but tangent spaces are allowed to be. [6]

For several decades after publishing his general theory of relativity in 1915, Albert Einstein tried to unify gravity with electromagnetism, to create a unified field theory explaining both interactions. In the latter years of World War II, Albert Einstein began considering complex spacetime geometries of various kinds. [7]

In 1953, Wolfgang Pauli generalised [8] the Kaluza–Klein theory to a six-dimensional space, and (using dimensional reduction) derived the essentials of an SU(2) gauge theory (applied in quantum mechanics to the electroweak interaction), as if Klein's "curled up" circle had become the surface of an infinitesimal hypersphere.

In 1975, Jerzy Plebanski published "Some Solutions of Complex Albert Einstein Equations". [9]

There have been attempts to formulate the Dirac equation in complex spacetime by analytic continuation. [10]

See also

Related Research Articles

<span class="mw-page-title-main">General relativity</span> Theory of gravitation as curved spacetime

General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics. General relativity generalises special relativity and refines Newton's law of universal gravitation, providing a unified description of gravity as a geometric property of space and time or four-dimensional spacetime. In particular, the curvature of spacetime is directly related to the energy and momentum of whatever matter and radiation are present. The relation is specified by the Einstein field equations, a system of second order partial differential equations.

<span class="mw-page-title-main">Kaluza–Klein theory</span> Unified field theory

In physics, Kaluza–Klein theory is a classical unified field theory of gravitation and electromagnetism built around the idea of a fifth dimension beyond the common 4D of space and time and considered an important precursor to string theory. Gunnar Nordström had an earlier, similar idea. But in that case, a fifth component was added to the electromagnetic vector potential, representing the Newtonian gravitational potential, and writing the Maxwell equations in five dimensions.

M-theory is a theory in physics that unifies all consistent versions of superstring theory. Edward Witten first conjectured the existence of such a theory at a string theory conference at the University of Southern California in 1995. Witten's announcement initiated a flurry of research activity known as the second superstring revolution. Prior to Witten's announcement, string theorists had identified five versions of superstring theory. Although these theories initially appeared to be very different, work by many physicists showed that the theories were related in intricate and nontrivial ways. Physicists found that apparently distinct theories could be unified by mathematical transformations called S-duality and T-duality. Witten's conjecture was based in part on the existence of these dualities and in part on the relationship of the string theories to a field theory called eleven-dimensional supergravity.

<span class="mw-page-title-main">Theory of relativity</span> Two interrelated physics theories by Albert Einstein

The theory of relativity usually encompasses two interrelated physics theories by Albert Einstein: special relativity and general relativity, proposed and published in 1905 and 1915, respectively. Special relativity applies to all physical phenomena in the absence of gravity. General relativity explains the law of gravitation and its relation to the forces of nature. It applies to the cosmological and astrophysical realm, including astronomy.

<span class="mw-page-title-main">Theory of everything</span> Hypothetical physical concept

A theory of everything (TOE), final theory, ultimate theory, unified field theory or master theory is a hypothetical, singular, all-encompassing, coherent theoretical framework of physics that fully explains and links together all aspects of the universe. Finding a theory of everything is one of the major unsolved problems in physics.

<span class="mw-page-title-main">Gravitational singularity</span> Condition in which spacetime itself breaks down

A gravitational singularity, spacetime singularity or simply singularity is a condition in which gravity is predicted to be so intense that spacetime itself would break down catastrophically. As such, a singularity is by definition no longer part of the regular spacetime and cannot be determined by "where" or "when". Gravitational singularities exist at a junction between general relativity and quantum mechanics; therefore, the properties of the singularity cannot be described without an established theory of quantum gravity. Trying to find a complete and precise definition of singularities in the theory of general relativity, the current best theory of gravity, remains a difficult problem. A singularity in general relativity can be defined by the scalar invariant curvature becoming infinite or, better, by a geodesic being incomplete.

<span class="mw-page-title-main">Scalar field</span> Assignment of numbers to points in space

In mathematics and physics, a scalar field is a function associating a single number to every point in a space – possibly physical space. The scalar may either be a pure mathematical number (dimensionless) or a scalar physical quantity.

In theoretical physics, the Einstein–Cartan theory, also known as the Einstein–Cartan–Sciama–Kibble theory, is a classical theory of gravitation similar to general relativity. The theory was first proposed by Élie Cartan in 1922. Einstein–Cartan theory is the simplest Poincaré gauge theory.

In theoretical physics, geometrodynamics is an attempt to describe spacetime and associated phenomena completely in terms of geometry. Technically, its goal is to unify the fundamental forces and reformulate general relativity as a configuration space of three-metrics, modulo three-dimensional diffeomorphisms. The origin of this idea can be found in an English mathematician William Kingdon Clifford's works. This theory was enthusiastically promoted by John Wheeler in the 1960s, and work on it continues in the 21st century.

In physics, a unified field theory (UFT) is a type of field theory that allows all that is usually thought of as fundamental forces and elementary particles to be written in terms of a pair of physical and virtual fields. According to the modern discoveries in physics, forces are not transmitted directly between interacting objects but instead are described and interpreted by intermediary entities called fields.

Since the 19th century, some physicists, notably Albert Einstein, have attempted to develop a single theoretical framework that can account for all the fundamental forces of nature – a unified field theory. Classical unified field theories are attempts to create a unified field theory based on classical physics. In particular, unification of gravitation and electromagnetism was actively pursued by several physicists and mathematicians in the years between the two World Wars. This work spurred the purely mathematical development of differential geometry.

A classical field theory is a physical theory that predicts how one or more physical fields interact with matter through field equations, without considering effects of quantization; theories that incorporate quantum mechanics are called quantum field theories. In most contexts, 'classical field theory' is specifically intended to describe electromagnetism and gravitation, two of the fundamental forces of nature.

In general relativity, the pp-wave spacetimes, or pp-waves for short, are an important family of exact solutions of Einstein's field equation. The term pp stands for plane-fronted waves with parallel propagation, and was introduced in 1962 by Jürgen Ehlers and Wolfgang Kundt.

In physics, aether theories propose the existence of a medium, a space-filling substance or field as a transmission medium for the propagation of electromagnetic or gravitational forces. "Since the development of special relativity, theories using a substantial aether fell out of use in modern physics, and are now replaced by more abstract models."

<span class="mw-page-title-main">Five-dimensional space</span> Geometric space with five dimensions

A five-dimensional space is a space with five dimensions. In mathematics, a sequence of N numbers can represent a location in an N-dimensional space. If interpreted physically, that is one more than the usual three spatial dimensions and the fourth dimension of time used in relativistic physics. Whether or not the universe is five-dimensional is a topic of debate.

The mathematics of general relativity is complex. In Newton's theories of motion, an object's length and the rate at which time passes remain constant while the object accelerates, meaning that many problems in Newtonian mechanics may be solved by algebra alone. In relativity, however, an object's length and the rate at which time passes both change appreciably as the object's speed approaches the speed of light, meaning that more variables and more complicated mathematics are required to calculate the object's motion. As a result, relativity requires the use of concepts such as vectors, tensors, pseudotensors and curvilinear coordinates.

<span class="mw-page-title-main">Øyvind Grøn</span> Norwegian physicist (born 1944)

Øyvind Grøn is a Norwegian physicist.

<span class="mw-page-title-main">Field (physics)</span> Physical quantities taking values at each point in space and time

In physics, a field is a physical quantity, represented by a scalar, vector, or tensor, that has a value for each point in space and time. For example, on a weather map, the surface temperature is described by assigning a number to each point on the map; the temperature can be considered at a certain point in time or over some interval of time, to study the dynamics of temperature change. A surface wind map, assigning an arrow to each point on a map that describes the wind speed and direction at that point, is an example of a vector field, i.e. a 1-dimensional (rank-1) tensor field. Field theories, mathematical descriptions of how field values change in space and time, are ubiquitous in physics. For instance, the electric field is another rank-1 tensor field, while electrodynamics can be formulated in terms of two interacting vector fields at each point in spacetime, or as a single-rank 2-tensor field.

In physics, a non-relativistic spacetime is any mathematical model that fuses n–dimensional space and m–dimensional time into a single continuum other than the (3+1) model used in relativity theory.

References

  1. Trautman, A. (1962). "A discussion on the present state of relativity - Analytic solutions of Lorentz-invariant linear equations". Proc. R. Soc. A. 270 (1342): 326–328. Bibcode:1962RSPSA.270..326T. doi:10.1098/rspa.1962.0222. S2CID   120301116.
  2. Newman, E. T. (1973). "Maxwell's equations and complex Minkowski space". J. Math. Phys. The American Institute of Physics. 14 (1): 102–103. Bibcode:1973JMP....14..102N. doi:10.1063/1.1666160.
  3. Penrose, Roger (1967), "Twistor algebra", Journal of Mathematical Physics , 8 (2): 345–366, Bibcode:1967JMP.....8..345P, doi:10.1063/1.1705200, MR   0216828, archived from the original on 2013-01-12, retrieved 2015-06-14
  4. Pais, Abraham (1982). Subtle is the Lord ...: The Science and the Life of Albert Einstein. Oxford: Oxford University Press. pp. 329–330.
  5. Oskar Klein (1926). "Quantentheorie und fünfdimensionale Relativitätstheorie". Zeitschrift für Physik A . 37 (12): 895–906. Bibcode:1926ZPhy...37..895K. doi:10.1007/BF01397481.
  6. Soh, H. P. (1932). "A Theory of Gravitation and Electricity". J. Math. Phys. (MIT). 12 (1–4): 298–305. doi:10.1002/sapm1933121298.
  7. Einstein, A. (1945), "A Generalization of the Relativistic Theory of Gravitation", Ann. of Math., 46 (4): 578–584, doi:10.2307/1969197, JSTOR   1969197
  8. N. Straumann (2000). "On Pauli's invention of non-abelian Kaluza–Klein Theory in 1953". arXiv: gr-qc/0012054 . Bibcode:2000gr.qc....12054S.{{cite journal}}: Cite journal requires |journal= (help)
  9. Plebański, J. (1975). "Some solutions of complex Einstein equations". Journal of Mathematical Physics . 16 (12): 2395–2402. Bibcode:1975JMP....16.2395P. doi: 10.1063/1.522505 . S2CID   122814301.
  10. Mark Davidson (2012). "A study of the Lorentz–Dirac equation in complex space-time for clues to emergent quantum mechanics". Journal of Physics: Conference Series. 361 (1): 012005. Bibcode:2012JPhCS.361a2005D. doi: 10.1088/1742-6596/361/1/012005 .

Further reading