This article includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations .(June 2016) |
In mathematics, specifically group theory, the identity component of a group G (also known as its unity component) refers to several closely related notions of the largest connected subgroup of G containing the identity element.
In point set topology, the identity component of a topological group G is the connected component G0 of G that contains the identity element of the group. The identity path component of a topological groupG is the path component of G that contains the identity element of the group.
In algebraic geometry, the identity component of an algebraic group G over a field k is the identity component of the underlying topological space. The identity component of a group scheme G over a base scheme S is, roughly speaking, the group scheme G0 whose fiber over the point s of S is the connected component (Gs)0 of the fiber Gs, an algebraic group. [1]
The identity component G0 of a topological or algebraic group G is a closed normal subgroup of G. It is closed since components are always closed. It is a subgroup since multiplication and inversion in a topological or algebraic group are continuous maps by definition. Moreover, for any continuous automorphism a of G we have
Thus, G0 is a characteristic subgroup of G, so it is normal.
The identity component G0 of a topological group G need not be open in G. In fact, we may have G0 = {e}, in which case G is totally disconnected. However, the identity component of a locally path-connected space (for instance a Lie group) is always open, since it contains a path-connected neighbourhood of {e}; and therefore is a clopen set.
The identity path component of a topological group may in general be smaller than the identity component (since path connectedness is a stronger condition than connectedness), but these agree if G is locally path-connected.
The quotient group G/G0 is called the group of components or component group of G. Its elements are just the connected components of G. The component group G/G0 is a discrete group if and only if G0 is open. If G is an algebraic group of finite type, such as an affine algebraic group, then G/G0 is actually a finite group.
One may similarly define the path component group as the group of path components (quotient of G by the identity path component), and in general the component group is a quotient of the path component group, but if G is locally path connected these groups agree. The path component group can also be characterized as the zeroth homotopy group,
An algebraic group G over a topological field K admits two natural topologies, the Zariski topology and the topology inherited from K. The identity component of G often changes depending on the topology. For instance, the general linear group GLn(R) is connected as an algebraic group but has two path components as a Lie group, the matrices of positive determinant and the matrices of negative determinant. Any connected algebraic group over a non-Archimedean local field K is totally disconnected in the K-topology and thus has trivial identity component in that topology.
In the mathematical field of algebraic topology, the fundamental group of a topological space is the group of the equivalence classes under homotopy of the loops contained in the space. It records information about the basic shape, or holes, of the topological space. The fundamental group is the first and simplest homotopy group. The fundamental group is a homotopy invariant—topological spaces that are homotopy equivalent have isomorphic fundamental groups. The fundamental group of a topological space is denoted by .
In mathematics, topological groups are the combination of groups and topological spaces, i.e. they are groups and topological spaces at the same time, such that the continuity condition for the group operations connects these two structures together and consequently they are not independent from each other.
In mathematics, specifically algebraic geometry, a scheme is a structure that enlarges the notion of algebraic variety in several ways, such as taking account of multiplicities and allowing "varieties" defined over any commutative ring.
In mathematics, the étale cohomology groups of an algebraic variety or scheme are algebraic analogues of the usual cohomology groups with finite coefficients of a topological space, introduced by Grothendieck in order to prove the Weil conjectures. Étale cohomology theory can be used to construct ℓ-adic cohomology, which is an example of a Weil cohomology theory in algebraic geometry. This has many applications, such as the proof of the Weil conjectures and the construction of representations of finite groups of Lie type.
In mathematics, a group scheme is a type of object from algebraic geometry equipped with a composition law. Group schemes arise naturally as symmetries of schemes, and they generalize algebraic groups, in the sense that all algebraic groups have group scheme structure, but group schemes are not necessarily connected, smooth, or defined over a field. This extra generality allows one to study richer infinitesimal structures, and this can help one to understand and answer questions of arithmetic significance. The category of group schemes is somewhat better behaved than that of group varieties, since all homomorphisms have kernels, and there is a well-behaved deformation theory. Group schemes that are not algebraic groups play a significant role in arithmetic geometry and algebraic topology, since they come up in contexts of Galois representations and moduli problems. The initial development of the theory of group schemes was due to Alexander Grothendieck, Michel Raynaud and Michel Demazure in the early 1960s.
In mathematics, an algebraic stack is a vast generalization of algebraic spaces, or schemes, which are foundational for studying moduli theory. Many moduli spaces are constructed using techniques specific to algebraic stacks, such as Artin's representability theorem, which is used to construct the moduli space of pointed algebraic curves and the moduli stack of elliptic curves. Originally, they were introduced by Alexander Grothendieck to keep track of automorphisms on moduli spaces, a technique which allows for treating these moduli spaces as if their underlying schemes or algebraic spaces are smooth. After Grothendieck developed the general theory of descent, and Giraud the general theory of stacks, the notion of algebraic stacks was defined by Michael Artin.
In mathematics, a reductive group is a type of linear algebraic group over a field. One definition is that a connected linear algebraic group G over a perfect field is reductive if it has a representation that has a finite kernel and is a direct sum of irreducible representations. Reductive groups include some of the most important groups in mathematics, such as the general linear group GL(n) of invertible matrices, the special orthogonal group SO(n), and the symplectic group Sp(2n). Simple algebraic groups and (more generally) semisimple algebraic groups are reductive.
In mathematics, a covering group of a topological group H is a covering space G of H such that G is a topological group and the covering map p : G → H is a continuous group homomorphism. The map p is called the covering homomorphism. A frequently occurring case is a double covering group, a topological double cover in which H has index 2 in G; examples include the spin groups, pin groups, and metaplectic groups.
In algebraic geometry, an étale morphism is a morphism of schemes that is formally étale and locally of finite presentation. This is an algebraic analogue of the notion of a local isomorphism in the complex analytic topology. They satisfy the hypotheses of the implicit function theorem, but because open sets in the Zariski topology are so large, they are not necessarily local isomorphisms. Despite this, étale maps retain many of the properties of local analytic isomorphisms, and are useful in defining the algebraic fundamental group and the étale topology.
The étale or algebraic fundamental group is an analogue in algebraic geometry, for schemes, of the usual fundamental group of topological spaces.
In algebraic geometry, the étale topology is a Grothendieck topology on the category of schemes which has properties similar to the Euclidean topology, but unlike the Euclidean topology, it is also defined in positive characteristic. The étale topology was originally introduced by Alexander Grothendieck to define étale cohomology, and this is still the étale topology's most well-known use.
In the mathematical field of topology, a hyperconnected space or irreducible space is a topological space X that cannot be written as the union of two proper closed subsets. The name irreducible space is preferred in algebraic geometry.
In operator theory, a branch of mathematics, every Banach algebra can be associated with a group called its abstract index group.
In mathematics a stack or 2-sheaf is, roughly speaking, a sheaf that takes values in categories rather than sets. Stacks are used to formalise some of the main constructions of descent theory, and to construct fine moduli stacks when fine moduli spaces do not exist.
In topology, constructible sets are a class of subsets of a topological space that have a relatively "simple" structure. They are used particularly in algebraic geometry and related fields. A key result known as Chevalley's theorem in algebraic geometry shows that the image of a constructible set is constructible for an important class of mappings (more specifically morphisms) of algebraic varieties . In addition, a large number of "local" geometric properties of schemes, morphisms and sheaves are (locally) constructible. Constructible sets also feature in the definition of various types of constructible sheaves in algebraic geometry and intersection cohomology.
In algebraic geometry, a local ring A is said to be unibranch if the reduced ring Ared is an integral domain, and the integral closure B of Ared is also a local ring. A unibranch local ring is said to be geometrically unibranch if the residue field of B is a purely inseparable extension of the residue field of Ared. A complex variety X is called topologically unibranch at a point x if for all complements Y of closed algebraic subsets of X there is a fundamental system of neighborhoods of x whose intersection with Y is connected.
In algebraic geometry, a morphism of schemes f from X to Y is called quasi-separated if the diagonal map from X to X × YX is quasi-compact. A scheme X is called quasi-separated if the morphism to Spec Z is quasi-separated. Quasi-separated algebraic spaces and algebraic stacks and morphisms between them are defined in a similar way, though some authors include the condition that X is quasi-separated as part of the definition of an algebraic space or algebraic stack X. Quasi-separated morphisms were introduced by Grothendieck & Dieudonné as a generalization of separated morphisms.
In commutative algebra and algebraic geometry, a morphism is called formally étale if it has a lifting property that is analogous to being a local diffeomorphism.
This is a glossary of algebraic geometry.
In algebraic geometry, a torsor or a principal bundle is an analogue of a principal bundle in algebraic topology. Because there are few open sets in Zariski topology, it is more common to consider torsors in étale topology or some other flat topologies. The notion also generalizes a Galois extension in abstract algebra. Though other notions of torsors are known in more general context this article will focus on torsors over schemes, the original setting where torsors have been thought for. The word torsor comes from the French torseur. They are indeed widely discussed, for instance, in Michel Demazure's and Pierre Gabriel's famous book Groupes algébriques, Tome I.